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ABSTRACT

Feature representations of histopathology whole slide images (WSIs) are crucial to the downstream applications
for computer-aided cancer diagnosis, including whole slide image classification, region of interest detection, hash
retrieval, prognosis analysis, and other high-level inference tasks. State-of-the-art methods for whole slide image
feature extraction generally rely on supervised learning algorithms based on fine-grained manual annotations,
unsupervised learning algorithms without annotation, or directly use pre-trained features. At present, there is
a lack of research on weakly supervised feature learning methods that only utilize WSI-level labeling. In this
paper, we propose a weakly supervised framework that learns the feature representations of various lesion areas
from histopathology whole slide images. The proposed framework consists of a contrastive learning network as
the backbone and a designed contrastive dynamic clustering (CDC) module to embedding the lesion information
into the feature representations. The proposed method was evaluated on a large scale endometrial whole slide
image dataset. The experimental results have demonstrated that our method can learn discriminative feature
representations for histopathology image classification and the quantitative performance of our method is close
to the fully-supervision learning methods. The code is available at https://github.com/junl21/cdc.
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1. INTRODUCTION

Local representation extraction based on convolutional neural networks (CNNs) has become essential in the recent
studies for WSI analysis.1–3 However, Learning good representations of different lesion tissues is a challenging
task, as the structure and the morphology of WSIs are complex.

Most of the previous methods for WSI analysis are based on fully supervised paradigm,4–8 which depends on
the manual annotations of pathologists. Although the supervised methods perform well in various downstream
tasks, the cost of pathological image annotation has become its development bottleneck. Recently, self-supervised
representation learning methods are widely developed, which can alleviate the above problems.9–11 In the field
of pathological image analysis, there have been some works using self-supervised learning to pre-train the feature
extractor.12–14 However, the representations obtained by these self-supervised methods are difficult to distinguish
the subtle inter-class morphology.

In this situation, the weakly supervised methods are introduced to the domain of histopathology image
representation learning.15–17 Most current weakly supervised methods17–19 are based on multi-instance learning
(MIL)20 and depend on the quality of the pre-trained representations. Moreover, the methods based on MIL
generally focus on binary classification tasks. There is a lack of research on weakly supervised representation
learning based on multi-class WSI labels. Typically, Lu et al.3 uses representations pre-trained on ImageNet21

and MIL method to classify WSIs. However, the features pre-trained on the ImageNet are not discriminative
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enough to represent the morphological and structural differences of tissues. In addition, this weakly supervised
method only provides a positive vs. negative prediction for each patch but cannot classify the subtypes of the
positive patches.

In response to the above problems, we propose a weakly supervised histopathological image representation
learning based on the framework proposed in ”Bootstrap Your Own Latent” (BYOL)11 and a designed dynamic
clustering module (CDC). BYOL is used to initialize the image representations. The CDC module is proposed to
enable the weak-supervision task to be trained as the full-supervision paradigm. Experiments on a endometrial
dataset have proven the effectiveness of the proposed and shown that the proposed method is competitive to the
full-supervision method.

2. MATERIALS AND METHODS

2.1 Dataset Setup

Table 1. The number of different types of slides in our dataset.

Normal WDEA MDEA LDEA SEIC

Train 18 186 166 74 42

Test 9 81 71 32 19

The experimental dataset contains 698 histopathological WSIs of endometrial cases, which includes 5 cat-
egories, namely Normal, well-differentiated endometrioid adenocarcinoma (WDEA), moderately-differentiated
endometrioid adenocarcinoma (MDEA), lowly-differentiated endometrioid adenocarcinoma (LDEA) and Serous
endometrial intraepithelial carcinoma (SEIC). The dataset was randomly split into training and testing parts
following the ratio of 7:3 at the WSI-level, and the details are shown in Table 1. All the WSIs are stained by
H&E and scanned at X40 by PRECICE 500 . Each WSI is manually annotated by the pathologists. Then, the
images from the annotated regions are regarded as positive and the others are negative in this paper. We crop
these WSIs into non-overlapping image patches in size of 256 × 256 pixels. For weakly supervised method, we
randomly crop 700 patches from each WSI. For fully supervised method, we crop 500 positive patches which
contain at least 70% positive pixels and 200 negative patches which contain 100% negative pixels from each WSI.

In this paper, we address the weakly supervised problem for patch representation learning with only the
WSI-level labels. Specifically, we assign a pseudo-label for the patches from a training WSI as the same of
the WSI. In this case, the pseudo-labels for the patches from the annotated regions are consistent to the true
labels of these patches and pseudo-labels for the negative patches are opposite to the true labels, which are then
corrected in our method. And for the test set, the patches are labeled based on the pathologists’ annotations for
quantitative evaluation.

2.2 Method

The overview of the proposed framework is illustrated in Figure 1. The pipeline consists of two steps: pre-training
and fine-tuning. In the pre-training step, we apply BYOL11 to initializing the feature representations of patches.
In the fine-tuning step, we use the proposed contrastive dynamic clustering (CDC) module to embedding the
semantic information into the feature representations. The details of the two steps are described as following.

Pre-training step. We introduce BYOL to pre-train a network to initialize representations of the patches.
It’s a siamese network consisting of two branches, namely an online network and a target network. The online
network is composed of an encoder fθ, a projector gθ and a predictor qθ, which are defined by a set of trainable
weights θ. Correspondingly, the target network contains an encoder fξ and a projector gξ that share the same
structures of fθ and qθ but are determined by a set of weights ξ.

In the training stage, two different augmented views for a patch x are fed into the online network and the
target network, respectively. Then, an L2 loss is built between the outputs of the two branches to train the



Figure 1. The overview of our proposed framework, where (a) is the pre-train step, which aims to learning image represen-
tations by BYOL, and (b) is the fine-tune step, which aims to embedding the lesion information to image representations
by CDC module.

weights θ of the online network. The target network is updated by the exponential moving average (EMA)
mechanism, as illustrated in Figure 1(a).

Fine-tuning step. Afterwards, we append a classification layer on the end of gθ and use the proposed CDC
module to fine-tune the fθ and gθ. The motivation of CDC is that the average distance from a positive patch to
the patches with the same pseudo-label should be closer than those with the other pseudo-labels. Based on this
hypothesis, we design a clustering mechanism to correct the pseudo-labels, i.e., to identify the negative patches
with false positive pseudo-labels.

Specifically, we build a cluster based on the output of gξ for each category from the same category of WSIs.
As shown in Figure 1(b), letting z′i denote the output of gξ for the i-th patch and z̄′k denote the center for the
k-th cluster, k = 0, 1, ..., C − 1, the correction of the pseudo-label ỹi is formulated as

yi =

{
0 ỹi = 0 or si0 > Tneg

ỹi otherwise,
, sik = edik/

∑
j
edij , dik = 〈z′i, z̄′k〉, (1)

where dik is the similarity between the i-th patch and k-th cluster, sik is the probability the patch belongs to the
k-th class, and si0 is the probability the patch belongs to the negative class (normal tissue). A high probability
of si0 indicates the patch is close to the negative cluster. Therefore, a threshold Tneg is used to correct the
pseudo-label to be negative, i.e., yi = 0.

In our method, the k-th cluster is defined by a set Ck = {z′i} and implemented by a queue in a consistent
length. Correspondingly, the cluster center z̄′k is dynamically calculated in each step of training by equation
z̄′k = 1/|Ck|

∑
z′
i∈Ck

z′i,. To ensure z̄′k to be consistently representative to the corresponding class during the

optimization of the network, we proposed to update Ck in each step of training. Specifically, for the k-th cluster,
a set of samples C+

k are recognized from the mini-batch. The representations in C+
k are pushed to the cluster

queue Ck and simultaneously pop |C+
k | oldest samples from Ck. Correspondingly, |C+

k | is recognized by the
following strategy

C+
k =

{
{z′i|si0 > Tneg} k = 0

{z′i|si0 < (1− Tpos)} otherwise
(2)



where Tpos is threshold to filter the representative positive patches. Particularly, Ck is filled by the representations
extracted by the pre-trained BYOL’s target network during the early steps of the training.

After correction, yi is used as the label of i-th patch to fine-tune the model based on cross-entropy loss function.
Finally, the encoder fθ and the predictor gθ as our feature extractor to obtain the image representations.

3. RESULTS

The ResNet5022 is used as the baseline to evaluate the effectiveness of the proposed representation learning
method in the downstream task of histopathological image classification. We compared our model with three
methods: 1) train the ResNet5022 by full-supervised learning, 2) pre-train the ResNet50 by BYOL11 and fine-
tune it by full-supervised learning, 3) The method proposed by Lerousseau et al.15 It should be noted that we
modified the method proposed by Lerousseau et al.15 from a binary task to a multi-class task by performing the
threshold on the negative probability.

Table 2. Comparison of different representation learning methods for the task of histopathology image classification, where
the best result in each column is printed in bold.

Methods Label level
Multi-class task Binary task

Accuracy AUC Sensitivity Specificity

Full-supervision22 Patch 0.595 0.819 0.955 0.867

BYOL+fine-tuning11 Patch 0.618 0.861 0.939 0.909

Lerousseau et al.15 WSI 0.482 0.721 0.584 0.920

BYOL+CDC (Ours) WSI 0.594 0.832 0.907 0.904

(a) Full-supervision (b) BYOL+fine-tuning (c) Lerousseau et al. (d) BYOL+CDC

Figure 2. The confusion matrix for different methods.

The results are presented in Table 2. Overall, the proposed method, which only depends on the WSI-level
labels, achieved a competitive performance to the ResNet directly trained by patch-level labels. The result
demonstrates the proposed CDC module has effectively corrected the false pseudo-labels, which enables the
weak-supervision task to be trained as the full-supervision paradigm. It also indicates that the representations
extracted by our method are equally discriminative to those by the full-supervision model. The network pre-
trained by BYOL and fine-tuned with patch labels achieves the best performance, especially in distinguishing
the negative and positive samples. However, it is difficult to distinguish the subtypes (e.g., WDEA, MDEA and
LDEA), as shown in Figure 2, for the reason that the model for representation extraction does not utilize subtype
information of lesions. Lerousseau et al.15 proposed to filter the pseudo-labels and learn the representations by
a single ResNet, which is sensitive to noisy labels and suffers from the collapse of feature space. In contrast, our
CDC module is based on the siamese network structure, which is more robust than the single branch structure.
It brings an improvement of 11.2 % in the classification accuracy and 0.111 in AUC compared to Lerousseau et
al.15



4. CONCLUSION

In this paper, we proposed a weakly supervised representation learning method based on WSI-level labels. BYOL
was used to initialize the image representations. Then, a contrastive dynamic clustering (CDC) module was
proposed to enable the weak-supervision task to be trained as the full-supervision paradigm. Experiments in an
endometrial dataset consisting of 698 WSIs show that the proposed method is competitive to the full-supervision
method, and achieves an 11.2% improvement in the classification accuracy than SOTA weak-supervised method.
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Razavian, N., and Tsirigos, A., “Classification and mutation prediction from non–small cell lung cancer
histopathology images using deep learning,” Nature medicine 24(10), 1559–1567 (2018).

[7] Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., Wey, N., Wild, P. J.,
Rueschoff, J. H., and Claassen, M., “Automated gleason grading of prostate cancer tissue microarrays via
deep learning,” Scientific reports 8(1), 1–11 (2018).

[8] Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., Salemi, H., Guzman, S.,
Walts, A. E., and Knudsen, B. S., “Convolutional neural networks can accurately distinguish four histologic
growth patterns of lung adenocarcinoma in digital slides,” Scientific reports 9(1), 1–12 (2019).

[9] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R., “Momentum contrast for unsupervised visual represen-
tation learning,” in [2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) ],
9729–9738 (2020).

[10] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G., “A simple framework for contrastive learning of visual
representations,” in [International conference on machine learning ], 1597–1607, PMLR (2020).
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