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A B S T R A C T
Background and objectives: Whole slide image (WSI) classification is of great clinical significance in
computer-aided pathological diagnosis. Due to the high cost of manual annotation, weakly supervised
WSI classification methods have gained more attention. As the most representative, multiple instance
learning (MIL) generally aggregates the predictions or features of the patches within a WSI to achieve
the slide-level classification under the weak supervision of WSI labels. However, most existing
MIL methods ignore spatial position relationships of the patches, which is likely to strengthen the
discriminative ability of WSI-level features.
Methods: In this paper, we propose a novel positional encoding-guided transformer-based multiple
instance learning (PEGTB-MIL) method for histopathology WSI classification. It aims to encode
the spatial positional property of the patch into its corresponding semantic features and explore
the potential correlation among the patches for improving the WSI classification performance.
Concretely, the deep features of the patches in WSI are first extracted and simultaneously a position
encoder is used to encode the spatial 2D positional information of the patches into the spatial-
aware features. After incorporating the semantic features and spatial embeddings, multi-head self-
attention (MHSA) is applied to explore the contextual and spatial dependencies of the fused features.
Particularly, we introduce an auxiliary reconstruction task to enhance the spatial-semantic consistency
and generalization ability of features.
Results: The proposed method is evaluated on two public benchmark TCGA datasets (TCGA-LUNG
and TCGA-BRCA) and two in-house clinical datasets (USTC-EGFR and USTC-GIST). Experimental
results validate it is effective in the tasks of cancer subtyping and gene mutation status prediction. In the
test stage, the proposed PEGTB-MIL outperforms the other state-of-the-art methods and respectively
achieves 97.13±0.34%, 86.74±2.64%, 83.25±1.65%, and 72.52±1.63% of the area under the receiver
operating characteristic (ROC) curve (AUC).
Conclusions: PEGTB-MIL utilizes positional encoding to effectively guide and reinforce MIL,
leading to enhanced performance on downstream WSI classification tasks. Specifically, the introduced
auxiliary reconstruction module adeptly preserves the spatial-semantic consistency of patch features.
More significantly, this study investigates the relationship between position information and disease
diagnosis and presents a promising avenue for further research.

1. Introduction
With the rapid development of digital pathology and

Artificial Intelligence (AI), histopathology Whole Slide Im-
age (WSI) classification based on deep learning has been
widely used in cancer subtyping [1–3], tumor grading [4–6],
prognosis analysis [7–9], gene mutation prediction [10–12],
etc., which can promote the diagnosis efficiency and quality
for pathologists. In the past decades, the WSI classification
methods usually perform supervised deep learning models
on the lesion regions or cells fully annotated by pathologists
for feature learning [13–15]. Inevitably the annotation pro-
cess is time-consuming and labour-intensive. Furthermore,
the subjectivity and uncertainty of manual annotation can
easily lead to the inconsistency of annotations and thus affect
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the quality of annotation data for AI model training. To
deal with these problems, weakly supervised methods [16–
19] have been widely applied in the field of computational
pathology which generally use slide-level labels to supervise
the feature learning of the patches within the WSI and further
obtain the WSI-level feature representation for classification
instead of region-level or cell-level fine-grained annotation.
Multiple Instance Learning (MIL) [20–24] is the most repre-
sentative weakly supervised method which generally regards
a WSI as a bag and the divided patches within the WSI as
the instances in the digital pathology community. It usually
assumes that a WSI is considered positive in a binary classifi-
cation problem if at least one instance is positive. Otherwise,
the WSI is regarded as negative. Conventional MIL-based
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Fig. 1: The overview of the proposed PEGTB-MIL for WSI classification, where (a) shows the entire workflow, (b) describes
the structure of the multi-head self-attention module, (c) and (d) illustrate the position encoder module and position decoder
module, respectively.

WSI classification methods often perform pooling opera-
tion on the predictions of the instances to acquire the bag-
level prediction [1, 25–27]. However, these methods rely on
the instance-level classifier, and the performance is easily
influenced by the pseudo labels of the instances. Instead,
the current popular MIL-based WSI classification meth-
ods mostly aggregate instance-level feature embeddings ex-
tracted by Convolutional Neural Network (CNN) to learn
bag-level representation and then achieve the WSI classifi-
cation through a bag-level classifier [2, 24]. These methods
obtain the superior classification performance, yet all the
patches within a WSI are independently treated in these
methods. Consequently, the global correlation among dif-
ferent patches is ignored and thus the classification perfor-
mance and interpretability of the AI model is affected. Note
that the attention-based method tries to use the attention
mechanism to explore the contribution of each patch to the
WSI label. However, it essentially calculates the attention
scores for each patch independently and thus the intrinsic
dependencies among the patches are not fully investigated.

Digital pathology WSIs contain rich morphological in-
formation and are therefore considered the gold standard
for cancer diagnosis. In clinical, tumors represent spatially
organized ecosystems comprised of diverse cell populations.
The spatial distribution of cells serves as a tool for better
understanding the tumor microenvironment, predicting out-
comes, and potentially aiding in the selection of therapeutic
interventions [28, 29]. The growth and progression of tumors

involve spatial processes that encompass the destruction,
invasion, and metastasis of normal tissue. For these reasons,
spatial patterns are integral components of histological tu-
mor grading and staging [30]. Similarly, several studies [29,
31] have demonstrated their close association with survival
prognosis. The spatial information between different regions
and their intrinsic semantic information can also help the
AI model learn the morphological details and the tumor
microenvironment-related patterns within the WSI structure,
which are difficult for pathologists to directly identify, espe-
cially in the task of gene mutation prediction. Recently, self-
attention [32, 33] has been successfully used in the commu-
nities of natural language processing and computer vision
which can exploit the long-range dependencies among the
tokens within the input sequence. Therefore, recent studies
[34–37] apply self-attention for MIL-based histopathology
WSI classification which can explore the global relation-
ships among the patches within a WSI. However, most of
these methods fail to consider the spatial position informa-
tion of the patches and the spatial-semantic consistency of
the patch features, which may help enhance the spatial-aware
ability of the patch features and the representational ability
of WSI-level features. Note that Vision Transformer (ViT)
[33] introduces the position embeddings of the patches,
yet it separately uses position encoding for horizontal and
vertical coordinates of the patch and then concatenates the
horizontal and vertical embeddings as the final position
embeddings. Therefore, the spatial structural information
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among the patches may be lost to some extent and thus
be unsuitable for fine-grained WSI classification tasks (e.g.
cancer subtyping and gene mutation status prediction).

Motivated by the above discussions, we propose a novel
positional encoding-guided transformer-based multiple in-
stance learning (PEGTB-MIL) method for histopathology
WSI classification. The entire framework is shown in Fig.
1. Compared with the conventional transformed-based MIL
methods for WSI classification, the proposed PEGTB-MIL
uses a position encoder (PE) module to encode the normal-
ized 2D positional coordinates of each tissue patch into the
spatial embeddings. At the same time, the CNN features
of the tissue patches are concatenated with their spatial
embeddings as the final features of the patches. Then multi-
head self-attention (MHSA) module is used to exploit the
spatial and contextual correlation among the patches. Par-
ticularly, a position decoder (PD) module is designed to
decode the patch features into the 2D position coordinates,
which applies the mask-based position reconstruction for
auxiliary guidance and thus improves the spatial-semantic
consistency and generalization ability of the patch features.
The proposed PEGTB-MIL is evaluated on two lung cancer
datasets, a breast cancer dataset, and a gastrointestinal stro-
mal tumor (GIST) dataset, and is compared with the state-
of-the-art MIL-based methods [2, 24, 34–36]. Experimental
results have validated that the proposed PEGTB-MIL has
better WSI classification performance in the tasks of cancer
subtyping and gene mutation status prediction.

The contributions of this paper can be summarized in
three folds:

∙ We propose a novel transformer-based multiple in-
stance learning framework for histopathology WSI classifi-
cation. Different from the traditional transformer-based MIL
methods, a position encoder module is used to uniformly
encode the 2D position coordinates of the patches into the
spatial embeddings. Then multi-head self-attention module
is applied to explore the contextual and spatial dependencies
among the patches within a WSI and thus the more discrim-
inative WSI-level feature representation can be gained.

∙ We introduce mask-based position reconstruction as
an auxiliary task to guide the model training. Unlike the
MIL methods based on position encoding, a position decoder
module is developed to guarantee the decoded spatial coordi-
nates and the true coordinates of the patches are as consistent
as possible. Consequently, the spatial-semantic consistency
and generalization capability of the patch features can be
greatly enhanced.

∙ We conduct experiments to validate the proposed
method and existing state-of-the-art MIL-based methods on
two public benchmark TCGA datasets and two in-house
clinical datasets. The results prove that our method can
achieve superior classification performance in lung and
breast cancer subtyping. More importantly, it has also shown
more promising results through directly using Hematoxylin
and Eosin (H&E) histopathology WSIs to predict the epi-
dermal growth factor receptor (EGFR) mutational status of
lung cancer and KIT mutational status of GIST.

The rest of this paper is organized as follows. Section 2
reviews the MIL-related works. Section 3 introduces the pro-
posed framework. Section 4 shows the experimental results
and analysis. The discussion and conclusion are presented in
Section 5 and Section 6, respectively.

2. Related works
In this section, we provide a brief overview of the related

works on the MIL-based WSI classification methods and the
MIL methods incorporating position encoding.
2.1. Multiple Instance Learning in WSI analysis

Due to the high cost of fine-grained annotations for
lesion regions, WSI classification problem can be defined
as a weakly supervised learning task. Currently, multiple
instance learning (MIL) is a promising choice for weakly
supervised WSI classification. It can be roughly classified
into two categories: instance-based methods and bag-based
methods.

For instance-based methods [1, 25–27], the simplest
approach is to use max-pooling or average-pooling to aggre-
gate the predicted probabilities of all the instances, thereby
generating a bag-level prediction. Campanella et al. [1]
proposed a MIL method based on Recurrent Neural Network
(RNN), where the pseudo labels of the patches are used to
train an instance-level classifier, and then the patches with
top 𝐾 positive probabilities generated by the classifier are
selected as the input of RNN for the final WSI classifica-
tion. Xu et al. [25] designed a weakly supervised learning
framework CAMEL for histopathology image segmentation,
which leverages a label enrichment strategy to dynamically
refine the labels of the instances, and subsequently trains an
instance classifier to achieve the instance-level classification
and pixel-level segmentation. Qu et al. [27] introduced an
instance-based MIL framework which combines contrastive
learning and prototype learning to train an instance classifier
for instance-level and bag-level classification. In short, these
above methods mostly use the pseudo labels of the patches to
train an instance classifier and then aggregate the predictions
from all the instances for WSI classification. However, there
exists the inherent noise within the pseudo labels due to
the absence of true labels for the instances and thus the
trained instance classifier may limit the WSI classification
performance.

Bag-based methods [2, 24, 34–37] aggregate the patch
features to obtain a WSI-level feature representation for
classification through a bag classifier and they have been
the mainstream of MIL-based WSI analysis methods. Ilse et
al. [24] proposed an attention-base MIL (ABMIL) method,
which calculates attention scores for each instance through
an attention module, and then aggregates the features of all
the instances into a bag embedding by treating the scores
as weights. Lu et al. [2] presented a clustering-constrained-
attention MIL (CLAM) method, which employs the attention
module to identify critical regions for disease diagnosis,
enabling accurate WSI classification. Different from AB-
MIL, CLAM optimizes the patch feature representation by
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using an instance-level clustering module. This allows the
attention module to better distinguish between positive and
negative patches, resulting in more discriminative WSI-level
representations. However, they have treated each patch as an
independent entity and thus the global dependencies among
the patches are not fully explored.

Recently the transformer architecture has achieved great
success in various AI application scenarios, which aims to
use self-attention to capture the long-range dependencies
among the tokens for a given sequence. In the field of
histopathology WSI analysis, recent works [34–37] have de-
signed the transformer-based MIL methods for WSI classifi-
cation, which focus on the global correlation exploration of
the patches within a WSI. Shao et al. [34] firstly proposed a
transformer-based MIL (TransMIL) method, which employs
the multi-head self-attention module to learn the potential
relationships among the patches and enhance the context-
aware ability with a pyramid position encoding generator
(PPEG) module. Reisenbuchler et al. [35] presented a lo-
cal attention graph-based Transformer for MIL (LAMIL)
method, which selects the 𝐾 nearest neighbors for each
instance and then calculates the self-attention scores with
these neighboring instances to model the relative relation-
ships among the patches. Zhao et al. [36] developed a novel
spatial encoding transformer-based MIL (SETMIL) method,
which leverages the spatial encoding transformer to up-
date instance representations by simultaneously aggregating
neighboring and globally correlated instances. Ding et al.
[37] proposed a novel multi-scale prototypical transformer
(MSPT) for WSI classification, which efficiently integrates
multi-scale information into the prototypical transformer
and thus achieves the multi-scale feature fusion. Obviously,
the aforementioned methods generate more powerful WSI-
level feature representation and thus have gained superior
WSI classification results than the traditional bag-based
methods, since the intrinsic relationships among the patches
are explored.
2.2. Position encoding in MIL

In the early stage of MIL, the spatial relationships among
the instances were often overlooked. Recently, ViT [33]
separately performs position encoding on the horizontal
and vertical coordinates of each patch and subsequently
concatenates these embeddings to form the final positional
embeddings. As a result, the spatial structural information
among the patches may be partially lost, rendering it unsuit-
able for fine-grained WSI classification tasks. In addition,
several transformer-based MIL methods [34–37] have been
proposed, which implicitly or explicitly consider the spatial
relationship exploration of the patches and design different
position encoding strategies based on the transformer archi-
tecture. TransMIL [34] reshapes the feature sequence of the
patches into a fixed-size square feature map. Consequently,
it fails to describe the real positional relationships of the
patches and does not consider the impact of the diverse
shapes of the tissue regions within the WSI on the feature

representation. LAMIL [35] integrates K-Nearest Neigh-
bor (KNN) graph and transformer architecture for model-
ing the patch spatial relationships. However, it is difficult
to define the optimal number of neighbors to characterize
the local morphological structure for different fine-grained
downstream tasks (e.g. cancer subtyping and gene mutation
prediction). SETMIL [36] simultaneously considers the ab-
solute and relative position encoding. Same with ViT, the ab-
solute position encoding uses 1D sequential position which
easily leads to the part spatial information lost. Besides,
the relative spatial relationships are introduced as a bias
term involved in the self-attention mechanism. However, the
measurement of relative relationships is derived from the
2D coordinates in the feature map. Consequently, it may fail
to reflect the original spatial morphological structure of the
tissue regions and the spatial-semantic consistency may be
influenced and limit the performance of fine-grained WSI
classification.

Through the above discussions, we still use the trans-
former structure to explore the spatial relationships which
is beneficial to improve the representational ability of WSI-
level features and the performance of WSI classification.
Different from the aforementioned works, we utilize a po-
sition encoding module to obtain the spatial-aware embed-
dings for each patch. The spatial-aware embeddings are then
fused with the semantic features of the patches, and input
into the multi-head self-attention module to learn spatial and
semantic relationships among patches. More importantly, we
adopt a mask-based position reconstruction auxiliary task to
enhance the spatial-semantic consistency and generalization
capability of the spatial-semantic fused features.

3. Methodology
3.1. Overview

The framework of the proposed method is shown in Fig.
1. Firstly, a given WSI is split into the patches and their cor-
responding features can be gained. Then, the normalized co-
ordinates are inputted into the position encoding (PE) mod-
ule to obtain the spatial embeddings. After that, the spatial
embeddings are fused with the patch semantic features and
fed into the multi-head self-attention (MHSA) module for
learning the spatial and semantic dependencies among the
patches. The spatial-semantic fused tokens generated by the
MHSA module are pooled into the WSI-level representation
for classification. Particularly, the position decoding (PD)
module is applied to preserve the spatial-semantic consis-
tency, which masks partial tokens for the spatial coordinate
reconstruction. The position reconstruction loss performed
on the true positions and decoded positions of the patches
and the cross-entropy loss for WSI-level features are jointly
used for model training.
3.2. Pre-processing and feature extraction

The high resolution of WSIs makes them unsuitable to
be directly inputted into the neural network for training.
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To address this problem, a window sliding strategy is em-
ployed to divide a single WSI into non-overlapping fixed-
size patches. Then, the tissue mask image is generated using
the OTSU [38] threshold segmentation method to remove
background patches. Therefore, a WSI can be represented as
X =

{

(𝑥1, 𝑝1), (𝑥2, 𝑝2),⋯ , (𝑥𝑛, 𝑝𝑛)
}, where 𝑥𝑖 ∈ ℝ𝑠×𝑠×3,

𝑝𝑖 ∈ ℝ2, 𝑛 is the number of the patches within a WSI, 𝑥𝑖represents the 𝑖-th patch, 𝑠 refers to the size of the patch, and
𝑝𝑖 denotes the corresponding center position coordinates of
𝑥𝑖. All the patch features are extracted by a pre-trained CNN
network. As a result, a WSI can be represented as a feature
matrix F ∈ ℝ𝑛×𝑑 , where 𝑑 is the feature dimension.
3.3. Position coordinate normalization

To facilitate network calculation and training conver-
gence, the input position coordinate matrix P needs to be
normalized, where P =

[

𝑝1, 𝑝2,⋯ , 𝑝𝑛
]

=
[

(𝑟1, 𝑐1), (𝑟2, 𝑐2),
⋯ , (𝑟𝑛, 𝑐𝑛)

]

∈ ℝ𝑛×2. The maximum and minimum values of
the row coordinate vector P𝑟 and column coordinate vector
P𝑐 are calculated from all the coordinates, which can be
used to obtain the height ℎ and width 𝑤 of the entire tissue.
Then, the maximum value of ℎ and 𝑤 is used for the scale
𝜆 of coordinate transformation to normalize the coordinates.
Finally, the normalized position coordinates P′

∈ ℝ𝑛×2 are
used as the input for the PE module. The entire process
of coordinate normalization is given in Algorithm 1. The
normalized coordinates can enhance network convergence
and mitigate biases caused by the size differences of tissue
regions in WSIs.

Algorithm 1: Position coordinate normalization
Input: The original position coordinates P, which can be

decomposed into two vectors corresponding to the
row and column, P𝑟 =

[

𝑟1, 𝑟2,⋯ , 𝑟𝑛
]

∈ ℝ𝑛 and
P𝑐 =

[

𝑐1, 𝑐2,⋯ , 𝑐𝑛
]

∈ ℝ𝑛.
Output: The normalized position coordinates P′ .
1) Calculate the maximum and minimum values of P𝑟 and P𝑐 :
𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 ← minP𝑟,maxP𝑟,minP𝑐 ,maxP𝑐

2) Calculate the scale 𝜆 of coordinate transformation:
ℎ ← 𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛, 𝑤 ← 𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛, 𝜆 ← max{ℎ,𝑤}

3) Normalize the coordinates:
for 𝑖 ⟵ 1 to 𝑛 do

𝑟′𝑖 , 𝑐
′

𝑖 ←
𝑟𝑖 − 𝑟𝑚𝑖𝑛

𝜆
,
𝑐𝑖 − 𝑐𝑚𝑖𝑛

𝜆end
P′

=
[

(𝑟′1, 𝑐
′

1), (𝑟
′

2, 𝑐
′

2),⋯ , (𝑟′𝑛, 𝑐
′

𝑛)
]

return P′

3.4. Spatial position encoding
To effectively capture the spatial relationships among

the patches, the normalized 2D position coordinates P′ are
encoded into the spatial embeddings F𝑝𝑜𝑠 using the PE
module, which consists of a fully connected (FC) layer, a

MHSA module, and layer normalization (LN) as displayed
in Fig. 1c. Similar to TransMIL [34], the Nyströmformer
[39] is adopted as the MHSA module, as shown in Fig. 1b.
It utilizes the Nystrom method to approximate self-attention
and reduces the final computational complexity from 𝑂(𝑛2)
to 𝑂(𝑛). Through the MHSA module, the spatial embedding
of each patch preserves its own positional information and
simultaneously exploits the positional dependencies among
all the patches. The operation can be described as follows:

F𝑝𝑜𝑠 = LN
(

MHSA
(

P′W𝑃𝐸

))

(1)

where W𝑃𝐸 ∈ ℝ2×𝑑𝑝 denotes a learnable parameter matrix
and 𝑑𝑝 is the dimension of the spatial embedding.
3.5. WSI-level feature generation and

classification
To embed spatial embeddings into the semantic features

of patches, the spatial embeddings are concatenated with
the patch semantic features to obtain the spatial-semantic
fused features F′

∈ ℝ𝑛×(𝑑+𝑑𝑝). Here, the MHSA module
is employed to learn the spatial and semantic relationships
among the patches, resulting in the spatial-semantic fused
tokens H =

[

h1,h2,⋯ ,h𝑛
]

∈ ℝ𝑛×𝑑𝑚 , where h𝑖 represents
the spatial-semantic fused token of the 𝑖-th patch within the
WSI X. The process is given as follows:

F′
= Concat(F,F𝑝𝑜𝑠)W𝑓𝑒𝑎𝑡

A,H = MHSA(LN(F′
))

(2)

where Concat(⋅) denotes the concatenation operation, W𝑓𝑒𝑎𝑡 ∈
ℝ(𝑑+𝑑𝑝)×𝑑𝑚 is a learnable transformation matrix, 𝑑𝑚 refers
to the dimension of the spatial-semantic fused features, and
A ∈ ℝ𝑛 represents the attention scores of 𝑛 patches and
is used for visualization analysis of attention maps (Section
4.6.1 for more details).

Similar to conventional bag-based MIL methods, the
spatial-semantic fused tokens are pooled to generate a WSI-
level feature representation h𝑠𝑙𝑖𝑑𝑒 ∈ ℝ𝑑𝑚 for classification,
as shown in Eq. (3)

h𝑠𝑙𝑑𝑖𝑒 = Pool(H)
p𝑠𝑙𝑖𝑑𝑒 = 𝜎(h𝑠𝑙𝑖𝑑𝑒W𝑠𝑙𝑖𝑑𝑒)

(3)

where Pool(⋅) is a pooling operation, W𝑠𝑙𝑖𝑑𝑒 ∈ ℝ𝑑𝑚×𝑐 is a
learnable parameter matrix for linear transformation , 𝑐 is
the number of the categories, 𝜎(⋅) is denoted as the softmax
function, and p𝑠𝑙𝑖𝑑𝑒 ∈ ℝ𝑐 is the predicted probabilities cor-
responding to each class. The cross-entropy loss is utilized
for WSI-level classification, which is formulated as:

𝑠𝑙𝑖𝑑𝑒 = −ylog (p𝑠𝑙𝑖𝑑𝑒
) (4)

where y is the one-hot ground truth of the WSI X.
3.6. Mask-based position reconstruction

The conventional transformer-based MIL methods typ-
ically directly employ the position encoding but ignore the
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spatial-semantic consistency of the patch features. Inspired
by Masked AutoEncoder (MAE) [40], we introduce the
mask-based position reconstruction as an auxiliary task,
which aims to guarantee the decoded spatial coordinates
and the true coordinates of the patches are as consistent
as possible through the mask strategy and thus improve
the spatial-semantic consistency and generalization of the
patch features. As shown in Fig. 1a, the mask-based position
reconstruction is achieved through the PD module, which
consists of an MHSA module, a LN layer, a FC layer, and a
Sigmoid layer, as displayed in Fig. 1d. Specifically, we mask
the spatial-semantic fused tokens H by replacing them with
a learnable token h𝑚𝑎𝑠𝑘 through a fixed mask ratio 𝑟𝑚𝑎𝑠𝑘. The
mask operation can be formatted as below:

H𝑚𝑎𝑠𝑘 =
[

h𝑚
1 ,h

𝑚
2 ,⋯ ,h𝑚

𝑛
]

← H =
[

h1,h2,⋯ ,h𝑛
]

h𝑚
𝑖 =

{

h𝑚𝑎𝑠𝑘 if 𝑖 ∈ MaskIDs(𝑛 ∗ 𝑟𝑚𝑎𝑠𝑘, 𝑛)
h𝑖 else

(5)

where MaskIDs(𝑚, 𝑛) is a function used to randomly
select ⌊𝑚⌋ indices from 1 to 𝑛 and H𝑚𝑎𝑠𝑘 ∈ ℝ𝑛×𝑑𝑚 denotes
the tokens processed by mask operation. Then, H𝑚𝑎𝑠𝑘 is
inputted into the PD module to predict the coordinates
P𝑝𝑟𝑒𝑑 =

[

(𝑟′′1 , 𝑐
′′

1 ), (𝑟
′′

2 , 𝑐
′′

2 ),⋯ , (𝑟′′𝑛 , 𝑐
′′
𝑛 )
]

∈ ℝ𝑛×2 of all the
patches. The entire process can be depicted:

P𝑝𝑟𝑒𝑑 = Sigmoid(LN (MHSA (

H𝑚𝑎𝑠𝑘
))

W𝑃𝐷) (6)
where W𝑃𝐷 ∈ ℝ𝑑𝑚×2 is a learnable parameter matrix and
Sigmoid(⋅) denotes the sigmoid activation function. The
Mean Squared Error (MSE) loss 𝑝𝑜𝑠 is used to measure
the position coordinate reconstruction error between P′ and
P𝑝𝑟𝑒𝑑 in Eq. (7)

𝑝𝑜𝑠 = 𝜏 × 1
𝑛

𝑛
∑

𝑖

√

(𝑟′′𝑖 − 𝑟′𝑖)2 + (𝑐′′𝑖 − 𝑐′𝑖 )2 (7)

where 𝜏 is a scaling parameter with a default value of 100.
Finally, the entire framework is trained end-to-end based on
the composite objective function:

𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑠𝑙𝑖𝑑𝑒 + (1 − 𝛼)𝑝𝑜𝑠 (8)
where 𝛼 is the weight of 𝑠𝑙𝑖𝑑𝑒.

4. Experiment and Result
4.1. Datasets

Our proposed method is evaluated on two public bench-
mark TCGA datasets (TCGA-LUNG and TCGA-BRCA)1
and two in-house clinical datasets (USTC-EGFR and USTC-
GIST)2 which come from the First Affiliated Hospital of

1TCGA-LUNG and TCGA-EGFR were obtained from The Cancer
Genome Atlas portal (https://portal.gdc.cancer.gov/) [41].

2The study was approved by the Medical Research Ethics Committee
of the First Affiliated Hospital of the University of Science and Technology
of China (Anhui Provincial Hospital) under the protocols No. 2022-RE-454
and No. 2024KY-009.

Table 1
The WSI Distribution of the four Datasets.

TCGA-LUNG Normal LUAD LUSC

Train 385 326 333
Test 165 141 144

TCGA-BRCA IDC ILC

Train 555 142
Test 239 62

USTC-EGFR Neg L858R 19del Wild Others

Train 117 80 137 99 98
Test 48 38 47 47 43

USTC-GIST Neg Wild Exon 91 Exon 112 Others

Train 17 52 53 296 44
Test 9 16 11 124 21

1 Exon 9: KIT gene exon 9.
2 Exon 11: KIT gene exon 11.

USTC (University of Science and Technology of China).
TCGA-LUNG and TCGA-BRCA are used for lung and
breast cancer subtyping. USTC-EGFR is applied for gene
mutation prediction of the EGFR gene in non-small cell lung
cancer (NSCLC). USTC-GIST is employed for gene mu-
tation prediction in gastrointestinal stromal tumor (GIST).
Notably, the gene mutation task in our experiment aims to
predict the fine-grained gene mutation status for EGFR and
GIST through H&E-stained WSIs, which is more convenient
and can effectively reduce costs compared with the tradi-
tional gene sequencing methods. The detailed profiles of the
three datasets are presented below.

∙ TCGA-LUNG contains 1494 slides from 1345 cases
for lung cancer subtyping from the TCGA program. This
dataset includes three categories: non-cancerous tissue (Nor-
mal), Lung Squamous Cell Carcinoma(LUSC), and Lung
Adenocarcinoma (LUAD).

∙ TCGA-BRCA contains 998 cases and each case corre-
sponds to a single slide. It has two categories of breast can-
cer: Invasive ductal (IDC) and Invasive lobular carcinoma
(ILC).

∙ USTC-EGFR contains 754 slides from 521 cases.
This dataset has two common EGFR mutation types: EGFR
exon 19 deletion (19del) and a missense mutation in exon
21 (L858R). The 19del and L858R mutations are the most
prevalent actionable alterations, accounting for 40% and
45% of NSCLC driver mutations, respectively [42]. Accu-
rate classification for these two categories is of great clinical
significance for guiding personalized therapeutic strategies.
Besides, we collect another three categories, negative (Neg),
the wild type (Wild), and other driver mutation types (Oth-
ers).

∙ USTC-GIST contains 643 slides from 116 cases. GIST
is the most common sarcoma of the gastrointestinal (GI)
tract. It is a rare neoplasm and the reported incidence varies
significantly ranging from 0.4 to 2 cases per 100,000 indi-
viduals per year [43]. Particularly, its incidence in China
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Fig. 2: The performance curves of tuning four hyper-
parameters on the TCGA-LUNG dataset, which (a) is the mask
ratio 𝑟𝑚𝑎𝑠𝑘, (b) is the dimension of the spatial embedding 𝑑𝑝,
(c) is the dimension 𝑑𝑚 of the spatial-semantic fused feature,
and (d) the weight 𝛼 of 𝑠𝑙𝑖𝑑𝑒.

has been increasing year by year, which is only lower than
gastric cancer and colorectal cancer in gastrointestinal tu-
mors. Approximately 75-80% of GIST have mutations in the
KIT gene [44]. Imatinib, a multi-targeted tyrosine kinase
inhibitor (TKI) against KIT, PDGFRA, and BCR-ABL, is
the advanced therapy for unresectable or metastatic GIST.
However, different imatinib dosage strategies are crucial for
the specific KIT gene mutations, such as KIT gene exon 9
and KIT gene exon 11 mutations [45]. Therefore, the ability
to identify KIT mutation status in advance through H&E-
stained WSIs has clinical importance for guiding optimal
treatment pathways in GIST patients. This dataset has two
common GIST mutation types: KIT gene exon 9 and KIT
gene exon 11. Besides, we collect another three categories,
negative (Neg), the wild type (Wild), and other driver gene
mutation types (Others).

A comprehensive summary of these datasets is pre-
sented in Table 1. TCGA-LUNG and TCGA-BRCA are
publicly available datasets with labels confirmed from the
analysis of official clinical information. The mutation types
in USTC-EGFR and USTC-GIST datasets are obtained
through molecular sequencing and organized by patholo-
gists. We divide the four datasets into train and test sets with
a ratio of 7:3 at the patient level. The train set is used for
model training and hyper-parameter verification (Section 4.3
for more details). Finally, we evaluate the performance of the
model in the test set.
4.2. Implementation details

Before training, all the slides are divided into patches
of size 256×256 using the sliding window strategy at 20×

Fig. 3: The ROC curves of PEGTB-MIL on the TCGA-LUNG,
TCGA-BRCA, USTC-EGFR, and USTC-GIST datasets are
shown in (a), (b), (c), and (d), respectively.

magnification. The OTSU [38] segmentation method is em-
ployed to generate a tissue mask image to extract fore-
ground patches and remove background patches. Then, the
1024-dimensions features of the patches are extracted by a
standard ResNet50 [46] pre-trained in the ImageNet, which
leverages the representations learned from a large number
of images, enhancing its ability to capture complex patterns
and features relevant to the specific tasks. During the training
stages of PEGTB-MIL, the Adam optimizer is employed
with an initial learning rate of 5e-4 and weight decay of le-5.
The size of the mini-batch is 1. The initial values of 𝑟𝑚𝑎𝑠𝑘,
𝑑𝑝, 𝑑𝑚, and 𝛼 are set to 0.25, 128, 512, and 0.5, respectively.
These four hyper-parameters are selected in the validation
stage. The accuracy of classification (ACC), the area under
the receiver operating characteristic curve (AUC), and F1
score are served as the metric of performance evaluation.
The following experimental results are reported by five-fold
cross-validation. All the experiments are conducted on one
computer with an AMD Ryzen Threadripper 3960X 24-Core
Processor CPU and a NVIDIA RTX 3090 GPU. Our codes
are available at https://github.com/HFUT-miaLab/PEGTB-
MIL.
4.3. Hyper-parameter verification

We conduct experiments on the TCGA-LUNG dataset
to investigate the effects of four hyper-parameters on the
performance of PEGTB-MIL. The four hyper-parameters are
as follows: (1) the mask ratio 𝑟𝑚𝑎𝑠𝑘, (2) the dimension 𝑑𝑝of spatial embedding, (3) the dimension 𝑑𝑚 of the spatial-
semantic fused features, and (4) the weight 𝛼 of 𝑠𝑙𝑖𝑑𝑒. Here,
we sequentially tune 𝑟𝑚𝑎𝑠𝑘, 𝑑𝑝, 𝑑𝑚, and 𝛼. The optimal values
of these four hyper-parameters on the TCGA-LUNG dataset
are all selected according to the AUC results in the validation
stage. The detailed results are shown in Fig. 2.
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Table 2
Ablation study of PEGTB-MIL on the TCGA-LUNG dataset.

Settings Position encoding strategy
Evaluation metrics

ACC (%) AUC (%) F1 (%)

(A) None 85.11 ± 2.43 95.89 ± 0.36 83.94 ± 3.10
(B) 1D-Embedding 83.33 ± 4.03 96.00 ± 0.59 81.42 ± 5.75
(C) 2D-Embedding 87.96 ± 2.49 96.88 ± 0.62 87.13 ± 2.88
(D) PE w/o Normalization 86.53 ± 2.63 96.56 ± 0.24 85.52 ± 3.09
(E) PE 88.58 ± 1.58 97.04 ± 0.55 87.94 ± 1.67
(F) PE+PD (ours) 𝟖𝟗.𝟏𝟔 ± 𝟏.𝟎𝟎 𝟗𝟕.𝟏𝟑 ± 𝟎.𝟑𝟒 𝟖𝟖.𝟓𝟓 ± 𝟏.𝟎𝟕

Table 3
Results of various MIL methods on two public benchmark TCGA-LUNG and TCGA-BRCA datasets.

Methods

TCGA-LUNG (𝑐𝑙𝑠 = 3) TCGA-BRCA (𝑐𝑙𝑠 = 2)

ACC (%) AUC (%) F1 (%) ACC (%) AUC (%) F1 (%)
[2.5% CI, 97.5% CI] [2.5% CI, 97.5% CI]

ABMIL 87.82 ± 0.45† 95.66 ± 0.30‡ 87.16 ± 0.48† 79.53 ± 2.81‡ 75.91 ± 6.11† 66.19 ± 5.11‡

[86.49, 89.11] [94.95, 96.27] [85.76, 88.42] [77.41, 81.66] [72.56, 79.03] [63.07, 69.08]

CLAM 88.18 ± 0.90 96.83 ± 0.25 87.44 ± 1.08 82.92 ± 1.83† 83.80 ± 3.81 74.83 ± 2.28
[86.80, 89.64] [96.25, 97.40] [85.96, 88.87] [80.93, 84.65] [81.06, 86.35] [72.02, 77.19]

TransMIL 87.24 ± 1.79 96.16 ± 0.43‡ 86.48 ± 1.99 82.46 ± 2.31† 86.07 ± 0.97 74.16 ± 0.94
[85.82, 88.67] [95.56, 96.75] [85.02, 87.85] [80.33, 84.25] [84.03, 88.97] [71.12, 76.68]

LAMIL 85.91 ± 2.05† 96.07 ± 0.28‡ 84.88 ± 2.44† 79.14 ± 5.58† 84.61 ± 3.56 72.94 ± 4.78
[84.49, 87.24] [95.43, 96.66] [83.34, 86.24] [77.08, 81.06] [81.99, 87.25] [70.11, 75.43]

SETMIL 83.87 ± 0.95‡ 94.54 ± 0.20‡ 82.96 ± 1.72‡ 70.10 ± 5.36‡ 80.74 ± 1.59‡ 64.57 ± 3.87†

[82.36, 85.38] [93.86, 95.25] [81.39, 84.39] [67.77, 72.49] [78.04, 83.32] [61.76, 67.22]

PEGTB-MIL 𝟖𝟗.𝟏𝟔 ± 𝟏.𝟎𝟎 𝟗𝟕.𝟏𝟑 ± 𝟎.𝟑𝟒 𝟖𝟖.𝟓𝟓 ± 𝟏.𝟎𝟕 𝟖𝟔.𝟑𝟏 ± 𝟏.𝟖𝟎 𝟖𝟔.𝟕𝟒 ± 𝟐.𝟔𝟒 𝟕𝟔.𝟕𝟏 ± 𝟑.𝟑𝟏
[87.91, 90.44] [96.63, 97.61] [87.20, 89.82] [84.52, 88.11] [84.01, 89.13] [73.79, 79.41]

†: p-value < 0.05.
‡: p-value < 0.01.

(1) Mask ratio 𝑟𝑚𝑎𝑠𝑘: 𝑟𝑚𝑎𝑠𝑘 controls the ratio of the
masked tokens in the spatial-semantic fused tokens H. We
tune the value of 𝑟𝑚𝑎𝑠𝑘 within the range of [0, 0.25, 0.5,
0.75, 1]. As shown in Fig. 2a, we can observe that the
optimal value of 𝑟𝑚𝑎𝑠𝑘 is 0.25 on the TCGA-LUNG dataset.
Notably, there is a significant decrease when 𝑟𝑚𝑎𝑠𝑘 = 1. It
has demonstrated that the PD module (𝑟𝑚𝑎𝑠𝑘 ≤ 1) can have
a positive impact on the model performance.

(2) The dimension 𝑑𝑝 of spatial embedding: 𝑑𝑝 controls
the dimensionality of the spatial embedding. Experimen-
tally, we tune 𝑑𝑝 ∈ [32, 64, 128, 256] for verification. The
optimal value for 𝑑𝑝 is 128 on the TCGA-LUNG dataset, as
can be observed in Fig. 2b. The lower dimensions (e.g.,𝑑𝑝= 32 or 64) result in a loss of representational capacity
for complex spatial relationships, while higher dimensions
exhibit redundancy and overfitting issues (e.g.,𝑑𝑝 = 256).

(3) The dimension 𝑑𝑚 of the spatial-semantic fused
features: After incorporating the patch semantic features
and their corresponding spatial embeddings, a transfor-
mation matrix W𝑓𝑒𝑎𝑡 is utilized to map the dimension of
the concatenated features to 𝑑𝑚, resulting in the spatial-
semantic fused features. We tune 𝑑𝑚 within the range of
[256, 512, 1024, 2048]. As presented in Fig. 2c, the optimal

value of 𝑑𝑚 on the TCGA-LUNG dataset is 512. This ex-
planation indicates that a lower dimension of fused features
(e.g., 𝑑𝑚 = 256) can lead to decreased learning ability of the
model, while higher dimensions (e.g., 𝑑𝑚= 1024 or 2048)
can make the model more difficult to converge.

(4) The weight 𝛼 of 𝑠𝑙𝑖𝑑𝑒: 𝛼 controls the contributions
of 𝑠𝑙𝑖𝑑𝑒 and 𝑝𝑜𝑠. We test it in the range of [0.1, 0.9] with a
step of 0.1. As depicted in Fig. 2d, it is clear that the optimal
value of 𝛼 on the TCGA-LUNG dataset is 0.5, which also
demonstrates that balanced 𝑠𝑙𝑖𝑑𝑒 and 𝑝𝑜𝑠 can better guide
the model training.
4.4. Ablation study

To verify the effectiveness of the proposed position
encoding (PE) module and mask-based position reconstruc-
tion (PD module), we conduct the ablation study on the
TCGA-LUNG dataset. The results are shown in Table 2. In
detail, the settings are as follows: (A) represents the network
without position encoding and decoding; (B) indicates the
network only with Transformer-1D [32] position encoding;
(C) infers the network only with ViT-2D [33] position en-
coding; (D) symbolizes the network with the proposed PE
module, the coordinates are not normalized; (E) denotes the
network only with the proposed PE module, the coordinates
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Table 4
Results of various MIL methods on two in-house clinical USTC-EGFR and USTC-GIST datasets.

Methods

USTC-EGFR (𝑐𝑙𝑠 = 5) USTC-GIST (𝑐𝑙𝑠 = 5)

ACC (%) AUC (%) F1 (%) ACC (%) AUC (%) F1 (%)
[2.5% CI, 97.5% CI] [2.5% CI, 97.5% CI]

ABMIL 44.84 ± 1.96‡ 76.20 ± 0.75‡ 40.01 ± 2.84† 61.66 ± 7.93‡ 70.89 ± 2.35 36.84 ± 10.89†

[42.24, 47.62] [74.49, 77.88] [37.49, 42.21] [57.77, 63.71] [66.39, 73.10] [33.14, 40.29]

CLAM 47.17 ± 0.59† 79.23 ± 1.01‡ 44.75 ± 1.33† 60.22 ± 3.86† 70.94 ± 1.68 42.36 ± 1.70
[44.39, 49.96] [77.63, 80.84] [41.96, 47.14] [58.40, 64.39] [67.98, 74.06] [39.01, 45.47]

TransMIL 48.16 ± 2.58 81.45 ± 1.05 45.46 ± 5.57 53.15 ± 13.77‡ 70.57 ± 3.70 41.86 ± 4.77
[45.29, 51.12] [79.99, 82.94] [42.52, 47.85] [50.14, 56.39] [67.53, 73.54] [38.61, 45.16]

LAMIL 46.82 ± 2.76‡ 80.82 ± 0.96† 42.20 ± 3.88† 44.09 ± 10.83‡ 65.57 ± 3.35† 36.26 ± 8.80
[43.95, 49.78] [79.43, 82.14] [39.61, 44.48] [41.20, 48.17] [62.84, 68.11] [34.41, 38.19]

SETMIL 48.16 ± 2.48‡ 81.79 ± 1.71 42.74 ± 2.73‡ 53.92 ± 5.95‡ 69.39 ± 2.71 39.05 ± 1.85
[45.20, 51.21] [80.41, 83.15] [40.11, 44.97] [50.38, 57.24] [66.73, 72.02] [36.20, 41.36]

PEGTB-MIL 𝟓𝟐.𝟒𝟕 ± 𝟑.𝟕𝟕 𝟖𝟑.𝟐𝟓 ± 𝟏.𝟔𝟓 𝟓𝟏.𝟒𝟎 ± 𝟒.𝟏𝟎 𝟔𝟓.𝟓𝟐 ± 𝟑.𝟕𝟔 𝟕𝟐.𝟓𝟐 ± 𝟏.𝟔𝟑 𝟒𝟓.𝟐𝟖 ± 𝟐.𝟔𝟑
[49.68, 55.52] [81.93, 84.62] [48.43, 54.00] [63.75, 69.83] [69.71, 74.97] [41.96, 47.00]

†: p-value < 0.05.
‡: p-value < 0.01.

are normalized; (F) depicts complete PEGTB-MIL and no
ablation is performed.

For the analysis of detailed results, (A) has an obvious
decline in terms of three metrics compared to (C) and (E).
It has indicated that learnable position encoding can effec-
tively enhance the performance of the model. (B) exhibits
poorer performance, possibly because the Transformer-1D
encoding method is not learnable and cannot be optimized.
Note that (E) surpasses (C) by 0.62% in ACC, 0.16% in AUC,
and 0.81% in F1. It can be explained that the proposed PE
module can express richer position information compared to
ViT-2D, which encodes rows and columns independently.
To validate the effectiveness of the proposed PD module,
we compare the experimental results of (E) and (F). When
the PD module is removed, we can observe that the per-
formance of the model has declined, with ACC decreasing
by 0.58%, AUC by 0.09%, and F1 by 0.61%. It has been
demonstrated that the mask-based position reconstruction
task effectively preserves the spatial-semantic consistency
of features and improves the classification performance of
the model. Additionally, in the proposed PEGTB-MIL, the
input of the PE module needs to be normalized. Comparing
with the experimental results of (D) and (E), (D) shows a
significant performance drop, with ACC dropping by 2.05%,
AUC by 0.48%, and F1 by 2.42%. The reason may be that
the unnormalized input prevents the model from converging
properly in the training stage.

To strengthen above conclusions, we present the results
of the ablation studies conducted on other three datasets:
TCGA-BRCA, USTC-EGFR, and USTC-GIST. The results
can be seen in Table A1 in the appendix. The conclusions
obtained from the results on the other three datasets are
highly consistent with those from the TCGA-LUNG dataset.
Specifically, compared to the better-performing setting (B)
method, our method achieves increases of 4.33% in ACC,
3.58% in AUC, and 3.07% in F1 on the TCGA-BRCA

dataset. On the USTC-EGFR dataset, we observe increases
of 2.27% in ACC, 3.06% in AUC, and 5.75% in F1. For
the USTC-GIST dataset, the improvements are even more
notable, with ACC increasing by 7.96%, AUC by 2.04%, and
F1 by 4.29%. These results demonstrate that the proposed
positional encoding method is critical for WSI analysis and
outperforms other positional encoding techniques. It also
highlights the importance and effectiveness of the proposed
position reconstruction auxiliary task in maintaining spatial-
semantic consistency.
4.5. Comparative experiments

We compare our method with five most representative
MIL-based methods, including ABMIL [24], CLAM [2],
TransMIL [34], LAMIL [35], and SETMIL [36]. The exper-
iments for these methods are conducted using official code
and the same experimental settings. The mean and standard
deviation results on the test set are presented in Tables 2-3,
where the special indicators † and ‡ represent p-value < 0.05
and p-value < 0.01, respectively. Additionally, we evaluate
the uncertainty of the results through including the 2.5 and
97.5 percentile confidence intervals (CI), which are obtained
from 1000 bootstrapping iterations.

Overall, the proposed PEGTB-MIL achieves the best
performance with ACC, AUC, and F1 of 89.16%, 97.13%,
and 88.55% on the TCGA-LUNG dataset, 86.31%, 86.74%,
and 76.71% on the TCGA-BRCA dataset, 52.47%, 83.25%,
and 51.40% on the USTC-EGFR dataset, and 65.52%,
72.52%, and 45.28% on the USTC-GIST dataset.

In these comparison methods, ABMIL and CLAM are
both classic attention-based methods. CLAM uses the in-
stance clustering module to optimize the feature space of
patches, which enhances the attention module with improved
discriminative capability. Therefore, CLAM outperforms
ABMIL on all four datasets, with AUC gains of 1.17% on the
TCGA-LUNG dataset, 7.89% on the TCGA-BRCA dataset,
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Fig. 4: Visualization based on the attention map in PEGTB-MIL, where (a) displays the thumbnails for each slide, (b) shows
the lesion tissue images annotated by pathologists, (c) displays the attention heatmaps and (d) shows the ROI images of the
attention heatmaps along with some representative patches.

3.03% on the USTC-EGFR dataset, and 0.05% on the USTC-
GIST dataset.

For the transformer-based MIL methods, TransMIL
achieves better performance than CLAM on the TCGA-
BRCA dataset (AUC is 2.27% higher) and USTC-EGFR
dataset (AUC is 2.22% higher), but its AUC is lower than
CLAM by 0.67% and 0.37% on the TCGA-LUNG and
USTC-GIST datasets, respectively. The reason may be that
TransMIL exhibits overfitting on the two datasets (TCGA-
LUNG and USTC-GIST). As portrayed in Tables 3-4, LAMIL
achieves the moderate performance on the TCGA-LUNG,
TCGA-BRCA, and USTC-EGFR datasets. However, LAMIL
performs poorly on the USTC-GIST dataset, possibly be-
cause this method is sensitive to or unsuitable for this
dataset.

Note that SETMIL has a poor performance (ACC, AUC,
and F1 are 83.87%, 94.54%, and 82.96%) on the TCGA-
LUNG dataset compared to other methods. On the TCGA-
BRCA dataset, the results of SETMIL are also unsatisfac-
tory. Compared to the proposed PEGTB-MIL, ACC, AUC,
and F1 are lower by 16.21%, 6.00%, and 12.14% respec-
tively. SETMIL introduces 2D positional information as a
bias term into the self-attention calculation to learn relative
spatial relationships, resulting in an improvement in model
performance compared to LAMIL. Therefore, on the USTC-
EGFR dataset, SETMIL outperforms LAMIL in ACC, AUC,
and F1 by 1.34%, 0.97%, and 0.54% respectively. On the
USTC-GIST dataset, LAMIL is lower than SETMIL in
ACC, AUC, and F1 by 9.83%, 3.82%, and 2.79% respec-
tively.
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Fig. 5: The visualization of the position reconstruction is as follows: (a) represents the thumbnail of the slide, and (b)-(f) represent
the visualizations at 𝑟𝑚𝑎𝑠𝑘 of 0, 0.25, 0.50, 0.75, and 1.00 respectively.

Fig. 6: Box plot of position reconstruction errors on the TCGA-
LUNG dataset.

As indicated in Tables 3-4, the proposed PEGTB-MIL
achieves 0.98% higher ACC, 0.30% higher AUC, and 1.11%
higher F1 than the second-best method CLAM on the
TCGA-LUNG dataset. On the TCGA-BRCA dataset, com-
pared to the second-best method TransMIL, PEGTB-MIL
improves ACC, AUC, and F1 by 3.85% , 0.67%, and 2.55%
respectively. On the USTC-EGFR dataset, it outperforms the
second-best method SETMIL by 4.31% (p-value < 0.01) of
ACC, 1.46% of AUC, and 8.66% (p-value < 0.01) of F1.
On the USTC-GIST dataset, PEGTB-MIL exhibits a 5.30%
(p-value < 0.05) higher ACC, a 1.58% higher AUC, and
a 2.92% higher F1 compared to the second-best method
CLAM. Compared to the transformer-based MIL methods
such as TransMIL, LAMIL, and SETMIL, PEGTB-MIL
leverages the proposed position encoding and mask-based

position reconstruction to effectively enhance the spatial-
semantic consistency and the classification performance,
especially for predicting gene mutation status.

Additionally, we conduct the ROC curves of PEGTB-
MIL in each category of these four datasets in Fig. 3. Fig. 3a
shows the ROC curves of PEGTB-MIL on the TCGA-LUNG
dataset. We can observe that PEGTB-MIL exhibits the best
performance in the Normal category (AUC = 100%), and
also shows excellent results in the other two tumor categories
(LUAD and LUSC), with AUC greater than 95%. Fig. 3b
depicts the ROC curves of PEGTB-MIL on the TCGA-
BRCA dataset. For a binary classification task, the proposed
PEGTB-MIL achieves an overall AUC of 86.74%. Fig. 3c
displays the ROC curves of PEGTB-MIL on the USTC-
EGFR dataset. The proposed method has demonstrated ef-
ficient performance in identifying the negative category
(AUC = 94.72%). In addition, PEGTB-MIL exhibits poorer
performance in identifying the 19del mutation compared to
other categories, with an AUC of 23.37% lower than the
L858R category, 21.86% lower than the Wild category, and
22.46% lower than the Others category. It may be because
the 19del category is more challenging to identify compared
to other categories. Although PEGTB-MIL exhibits rela-
tively lower performance in identifying the 19del category,
it has demonstrated a notable AUC result (AUC = 86.83%)
for the L858R category. Fig. 3d exhibits the ROC curves
of PEGTB-MIL on the USTC-GIST dataset. For GIST, a
rare neoplasm, the overall AUC has gained an acceptable
result, 72.52%, and the AUC of each mutation type (Exon
9, Exon 11, and Others) is higher than 65%. It has indicated
that PEGTB-MIL has better classification ability under very
limited cases.
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Table 5
The anti-interference experimental results of PEGTB-MIL on the TCGA-LUNG dataset.

Settings Transformation ACC(%) △ACC(%) AUC(%) △AUC(%) F1(%) △F1(%)

(A) RIGHT 90o 𝟖𝟗.𝟔𝟎 ± 𝟎.𝟔𝟖 +0.44 96.99 ± 0.33 −0.14 𝟖𝟗.𝟎𝟑 ± 𝟎.𝟕𝟑 +0.48
(B) RIGHT 180o 89.51 ± 0.63 +0.35 97.02 ± 0.29 −0.11 88.95 ± 0.66 +0.40
(C) RIGHT 270o 88.93 ± 0.74 −0.23 96.92 ± 0.39 −0.21 88.30 ± 0.78 −0.25

(D) Random initialization (Train) 87.73 ± 1.96 −1.43 96.47 ± 0.60 −0.66 86.98 ± 2.23 −1.57
(E) Random initialization (Test) 88.58 ± 1.58 −0.58 96.68 ± 0.57 −0.45 87.94 ± 1.67 −0.61

(F) None 89.16 ± 1.00 —— 𝟗𝟕.𝟏𝟑 ± 𝟎.𝟑𝟒 —— 88.55 ± 1.07 ——

Fig. 7: Visualization based on the attention map in PEGTB-MIL under various transformations, where (a) displays the thumbnail
for the slide, (b) shows the lesion tissue image annotated by pathologists, (c) displays the attention heatmap, (d)-(f) represent
the attention heatmaps corresponding to respectively rotating the slide 90 degrees to the right, 180 degrees, and 270 degrees,
(g) denotes the attention heatmap with random initialization coordinates, and (h) refers the attention heatmap generated by the
model with random initialization coordinates in training stage.

4.6. Visualization and discussion
For the WSI classification task, the interpretability anal-

ysis can help pathologists better understand the AI-generated
results. In this section, we analyze and discuss the inter-
pretability of the proposed PEGTB-MIL. We design two
parts: (1) Interpretation with attention heatmaps generated
by the attention score of each patch; and (2) Visualization
of position reconstruction. In addition, we conduct anti-
interference experiments on the proposed PEGTB-MIL, fol-
lowed by comprehensive analysis and discussion.
4.6.1. Interpretation with attention heatmaps

To investigate the interpretability of the proposed PEGTB-
MIL, we generate attention heatmaps based on the attention
scores of each patch and its corresponding position infor-
mation, as shown in Fig. 4. Note that precisely delineating
mutation-related tissue regions directly from H&E WSI
remains more challenging. Therefore, we show the lesion

tissue annotated by pathologists and try to explore the model
interpretability for identifying the potential mutation-related
sites within the lesion regions. Fig. 4a shows the thumbnails
of these slides. Fig. 4b displays the annotations of the tumor
region (within the red curve) of each slide. Fig. 4c shows
the attention heatmaps for each slide. It can be seen that
the regions with high attention scores correspond to the
tumor regions and are consistent with the regions annotated
by pathologists. It has demonstrated that our method can
identify the tumor regions under the weak supervision.
Moreover, the model flags these red sites within the regions
as potential candidates with driver gene mutations, poten-
tially offering valuable insights for targeted therapies. Fig.
4d shows the regions of interest (ROIs) selected from the
attention heatmaps, with some representative patches. The
patches with a red border potentially exhibit the cells with
gene mutations compared to the normal patches with a cyan
border.
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4.6.2. Visualization of position reconstruction
To validate the spatial-semantic consistency of the fea-

tures, we design a position reconstruction visualization as
shown in Fig. 5. Specifically, we use the squared error
to quantify the position reconstruction error between the
predicted coordinates and ground truth coordinates. Fig.
5a shows the thumbnails of the three slides selected from
the test set on the TCGA-LUNG dataset. According to the
settings of the 𝑟𝑚𝑎𝑠𝑘 in Section 4.3, we show the results
of position coordinates reconstruction for 𝑟𝑚𝑎𝑠𝑘 = 0, 0.25,
0.5, 0.75, and 1 in Figs. 5(b)-(f) respectively. When 𝑟𝑚𝑎𝑠𝑘is set to 1, all the tokens are masked in the spatial-semantic
fused tokens H𝑚𝑎𝑠𝑘, which makes the PD module is difficult
to accurately reconstruct the coordinates of the patches and
thus randomly predict invalid coordinates, as depicted in
Fig. 5f. When 𝑟𝑚𝑎𝑠𝑘 is equal to 0, 0.25, 0.50, or 0.75, it
is evident that the reconstruction error in Figs. 5(b)-(e) are
generally lower, indicating that the position reconstruction is
insensitive to changes in the 𝑟𝑚𝑎𝑠𝑘 parameter and has strong
robustness. Notably, when 𝑟𝑚𝑎𝑠𝑘 is equal to 0, the position
reconstruction task removes the mask mechanism. From Fig.
5b, it can be observed that the model with 𝑟𝑚𝑎𝑠𝑘 = 0 exhibits
larger position reconstruction errors compared to Fig. 5c.
Therefore, it has demonstrated that the mask mechanism
can enhance the generalization ability of the PD module in
reconstructing coordinates.
4.6.3. Anti-interference ability

To quantitatively analyze the position reconstruction er-
ror across the entire dataset, we measure the error at different
𝑟𝑚𝑎𝑠𝑘 using the TCGA-LUNG dataset. The results are shown
in Fig. 6. Overall, when the 𝑟𝑚𝑎𝑠𝑘 is 0, 0.25, 0.50, and 0.75,
the error remains relatively low. However, at 𝑟𝑚𝑎𝑠𝑘 of 1,
the reconstruction error becomes significant. It has indicated
that the proposed PD module is effective and stable in terms
of position reconstruction performance. Besides, it can be
observed that when 𝑟𝑚𝑎𝑠𝑘 = 0, overfitting leads to more
outliers in the reconstruction results compared to when 𝑟𝑚𝑎𝑠𝑘is 0.25 or 0.5.

To verify the robustness of our proposed PEGTB-MIL,
we rotate the WSIs in the test set and then perform testing
on the TCGA-LUNG dataset. The results are shown in Table
5. We conduct three groups of rotation tests, labeled (A)-
(C), representing right rotations of 90 degrees, 180 degrees,
and 270 degrees, respectively. The results from these ex-
periments indicate that the differences(△) in the three per-
formance metrics, compared to the conventional test results
(F), are consistently less than 0.5%, demonstrating a notable
degree of robustness.

Furthermore, to assess the importance of accurate po-
sition information, we randomly initialize the position in-
formation (2D coordinates) during either the training or
test stages. Specifically, this involves shuffling the original
patch-coordinate pairs, resulting in each patch is assigned
an incorrect coordinate. We design two experiments, labeled
(D) and (E), described as follows: (D) random initializa-
tion of position information during the training stage, with

correct position information provided during the test stage;
(E) correct position information provided during the training
stage, with random initialization of position information
during the test stage. Compared to the experiment with
accurate position information (F), settings (D) and (E) show
significant performance declines. It has underscored the
critical importance of accurate position information for WSI
classification and highlighted the necessity of maintaining
spatial-semantic consistency of patch features. To facilitate
more extensive validation, we also conduct anti-interference
studies on TCGA-BRCA, USTC-EGFR, and USTC-GIST
datasets, with results presented in Table A2 in the appendix.
Overall, the conclusions analyzed from these results are
generally consistent with those on the TCGA-LUNG dataset.
It can be found that after coordinate rotation, the perfor-
mance of the model fluctuates between -2% and 2%. The
settings (D) and (E) exhibit a more significant decline in
classification performance. It has further emphasized the
importance of maintaining spatial-semantic consistency.

To investigate the impact of the aforementioned trans-
formations on the attention mechanism of the model, we set
up a series of attention heatmaps for analysis, as shown in
Fig. 7. Fig. 7a displays the thumbnail of slide. Fig. 7b shows
the annotated image. Fig. 7c illustrates heatmaps for regular
testing. Figs. 7(d)-(h) corresponds to the attention heatmaps
under the settings (A)-(E) as listed in Table 5. Overall,
the rotation transformations have minimal impact on the
attention mechanism of PEGTB-MIL. Even after applying
the transformations of random initialization coordinates,
the model can still identify tumor regions reasonably well.
However, compared to using correct positional information,
these transformations disrupt the spatial-semantic consis-
tency of features, leading to decreased attention. This can
also explain the significant decrease in model performance
observed in Table 5 under settings (D) and (E).
4.7. Computational efficiency

We calculate the model parameters (Params) and floating
point operations (FLOPs) for model inference to demon-
strate the computational efficiency of the compared methods.
The dimensionality of input features is set to 1024, while all
other settings are based on the official implementation. The
results are shown in Table 6. ABMIL and CLAM exhibit
lower computational costs because they do not require mod-
eling the dependencies among patches. LAMIL decreases
the number of patch pairs in self-attention calculations by
utilizing positional information, which further reduces com-
putational costs. Consequently, LAMIL has fewer FLOPs
than TransMIL. SETMIL contains more Transformer mod-
ules, leading to higher Params and FLOPs. Although the
proposed PEGTB-MIL is not as computationally efficient as
ABMIL and CLAM, it can achieve better performance. It
is worth noting that PEGTB-MIL is more computationally
efficient than other Transformer-based methods (TransMIL,
LAMIL, and SETMIL) while also delivering better classifi-
cation performance.
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Table 6
Comparison of model parameters (Params) and floating point operations (FLOPs) between PEGTB-MIL and compared methods.

Methods Params (MB) 𝑛𝑝 = 500* 𝑛𝑝 = 5000 𝑛𝑝 = 12000 𝑛𝑝 = 20000
FLOPs (×109) FLOPs (×109) FLOPs (×109) FLOPs (×109)

ABMIL 0.53 0.26 2.62 6.29 10.49
CLAM 0.79 0.39 3.93 9.44 15.73

TransMIL 2.67 1.92 13.78 33.07 54.56
LAMIL 2.63 1.31 13.11 31.46 52.43
SETMIL 14.70 1.79 18.09 44.67 74.44

PEGTB-MIL 1.71** 0.88 8.78 20.80 34.85
*: 𝑛𝑝 denotes the number of patches.
**: The complete model has a parameter number of 2.76 MB. During inference, the PD module is removed. Therefore,
the parameter number for inference is 1.71 MB.

Fig. 8: The visualization of poor position reconstruction is as follows: (a) represents the thumbnail of the slide, and (b)-(f)
represent the visualizations at 𝑟𝑚𝑎𝑠𝑘 of 0, 0.25, 0.50, 0.75, and 1.00 respectively.

5. Discussion
The proposed PEGTB-MIL is evaluated on two kinds of

tasks (i.e. cancer subtyping and gene mutation prediction),
specifically focusing on three kinds of cancers (i.e. lung,
breast, and gastrointestinal cancers). In the future, we plan
to improve our method and evaluate it on a broader range of
multi-organ and multi-cancer datasets. In the field of com-
putational pathology, while the capabilities of WSI analysis
have shown promising advancements, there is a significant
gap in clinical application. To achieve clinical application,
more powerful AI models are needed. We propose a novel
positional encoding method and a position reconstruction
auxiliary task, achieving better performance compared to
the previous MIL method. Notably, predicting gene mu-
tations only from H&E slides can effectively reduce time
and costs, assisting clinical decision-making. In this study,
the improvements of our method on the USTC-EGFR and
USTC-GIST datasets enhance model accuracy, providing
more reliable results and reducing the gap with practical

application requirements. Meanwhile, it also provides a new
insight for research on MIL.

There are two potential limitations of the proposed
PEGTB-MIL: (1) since position information is crucial for
our method, it may not be well-suited for certain patch sam-
pling strategies; (2) compared to image feature learning, the
integration of position information needs a larger number of
samples for effective positional pattern learning. However,
obtaining sufficient samples presents a significant bottleneck
in the medical field. Additionally, the size and distribution
of tissue also impacts the results of position reconstruction.
To validate this, we select and analyze two representative
slides: (1) the first slide has small tissue regions; (2) the
second slide has a more dispersed tissue distribution. The
position reconstruction results for both slides are shown
in Fig. 8. It can be observed that the small tissue regions
may lead to insufficient reconstruction information at high
mask ratios, resulting in poorer quality. For the second
slide, tissue dispersion may increase the distances between
regions, leading to insufficient reconstruction information.
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6. Conclusion
In this paper, we propose a novel position encoding-

guided transformer-based multiple instance learning (PEGTB-
MIL) method for histopathology WSI classification. The
proposed position encoding (PE) module is used to encode
the 2D positional coordinates into the spatial-aware embed-
dings. Then, the spatial-aware embedding and the semantic
features of the patches are incorporated to learn the spatial
and semantic relationship among the patches by the multi-
head self-attention (MHSA) module. In particular, a mask-
based position reconstruction auxiliary task is proposed to
enhance the spatial-semantic consistency and generalization
capability of the patch features. The proposed method is
validated on two publicly available TCGA and two in-house
datasets. Experimental results demonstrate the effectiveness
of PEGTB-MIL in cancer subtyping and gene mutation
status prediction tasks.

In the future, we will try to incorporate multi-scale
into position information reconstruction and explore the
magnification-spatial coordinate-semantic feature represen-
tation. Furthermore, several multi-modal studies [8, 9, 47,
48] have already demonstrated the benefits of utilizing mul-
tiple modalities to improve model performance. We will
consider extending our proposed position encoder-decoder
modules into a multi-modal framework to enhance gene
mutation detection performance from H&E slides.
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Appendix

Table A1
Ablation study of PEGTB-MIL on the TCGA-BRCA, USTC-EGFR, and USTC-GIST datasets.

TCGA-BRCA

Settings Position encoding strategy
Evaluation metrics

ACC (%) AUC (%) F1 (%)

(A) None 77.06 ± 2.71 80.47 ± 0.90 66.07 ± 3.23
(B) 1D-Embedding 77.21 ± 5.34 81.86 ± 4.30 69.42 ± 7.88
(C) 2D-Embedding 81.98 ± 2.08 83.16 ± 2.19 73.64 ± 4.88
(D) PE w/o Normalization 80.33 ± 4.19 83.33 ± 3.38 73.07 ± 7.30
(E) PE 83.21 ± 3.66 84.12 ± 2.07 76.24 ± 3.55
(F) PE+PD (ours) 𝟖𝟔.𝟑𝟏 ± 𝟏.𝟖𝟎 𝟖𝟔.𝟕𝟒 ± 𝟐.𝟔𝟒 𝟕𝟔.𝟕𝟏 ± 𝟑.𝟑𝟏

USTC-EGFR

Settings Position encoding strategy
Evaluation metrics

ACC (%) AUC (%) F1 (%)

(A) None 50.84 ± 1.06 79.27 ± 1.45 51.95 ± 1.79
(B) 1D-Embedding 49.13 ± 1.85 78.66 ± 0.99 47.02 ± 3.06
(C) 2D-Embedding 50.20 ± 2.88 80.19 ± 0.74 45.65 ± 1.37
(D) PE w/o Normalization 51.66 ± 4.35 82.49 ± 1.74 49.65 ± 3.31
(E) PE 51.66 ± 3.10 82.61 ± 2.09 49.75 ± 5.25
(F) PE+PD (ours) 𝟓𝟐.𝟒𝟕 ± 𝟑.𝟕𝟕 𝟖𝟑.𝟐𝟓 ± 𝟏.𝟔𝟓 𝟓𝟏.𝟒𝟎 ± 𝟒.𝟏𝟎

USTC-GIST

Settings Position encoding strategy
Evaluation metrics

ACC (%) AUC (%) F1 (%)

(A) None 53.56 ± 6.46 67.45 ± 3.31 37.16 ± 3.64
(B) 1D-Embedding 51.60 ± 14.20 66.87 ± 4.08 38.78 ± 4.91
(C) 2D-Embedding 57.56 ± 4.56 70.48 ± 3.93 40.99 ± 2.60
(D) PE w/o Normalization 58.56 ± 5.26 68.33 ± 3.37 41.40 ± 1.64
(E) PE 56.02 ± 6.98 69.13 ± 2.63 42.83 ± 1.01
(F) PE+PD (ours) 𝟔𝟓.𝟓𝟐 ± 𝟑.𝟕𝟔 𝟕𝟐.𝟓𝟐 ± 𝟏.𝟔𝟑 𝟒𝟓.𝟐𝟖 ± 𝟐.𝟔𝟑
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Table A2
The anti-interference experimental results of PEGTB-MIL on the TCGA-BRCA, USTC-EGFR, and USTC-GIST datasets.

TCGA-BRCA

Settings Transformation ACC(%) △ACC(%) AUC(%) △AUC(%) F1(%) △F1(%)

(A) RIGHT 90o 86.23 ± 0.97 −0.08 𝟖𝟕.𝟏𝟎 ± 𝟏.𝟗𝟑 +0.36 76.33 ± 1.44 −0.38
(B) RIGHT 180o 𝟖𝟔.𝟒𝟗 ± 𝟏.𝟎𝟑 +0.20 85.72 ± 1.28 −1.02 76.55 ± 2.90 −0.16
(C) RIGHT 270o 85.79 ± 0.64 −0.52 86.97 ± 2.30 +0.23 76.68 ± 1.32 −0.03
(D) Random initialization (Train) 82.38 ± 1.17 −3.93 83.44 ± 0.98 −3.30 70.72 ± 2.19 −5.99
(E) Random initialization (Test) 84.02 ± 1.92 −2.29 83.63 ± 0.22 −3.11 71.92 ± 1.56 −4.79
(F) None 86.31 ± 1.80 —— 86.74 ± 2.64 —— 𝟕𝟔.𝟕𝟏 ± 𝟑.𝟑𝟏 ——

USTC-EGFR

Settings Transformation ACC(%) △ACC(%) AUC(%) △AUC(%) F1(%) △F1(%)

(A) RIGHT 90o 52.93 ± 2.90 +0.46 82.17 ± 2.59 −1.08 51.17 ± 3.20 −0.23
(B) RIGHT 180o 𝟓𝟐.𝟗𝟖 ± 𝟑.𝟖𝟕 +0.51 83.49 ± 1.76 +0.24 𝟓𝟐.𝟕𝟑 ± 𝟏.𝟕𝟕 +1.33
(C) RIGHT 270o 51.82 ± 1.69 −0.65 𝟖𝟒.𝟗𝟐 ± 𝟑.𝟗𝟐 +1.67 50.64 ± 2.04 −0.76
(D) Random initialization (Train) 47.77 ± 2.57 −4.70 78.40 ± 2.47 −4.85 43.93 ± 2.12 −7.47
(E) Random initialization (Test) 45.98 ± 3.53 −6.49 80.44 ± 3.70 −2.81 42.24 ± 3.74 −9.16
(F) None 52.47 ± 3.77 —— 83.25 ± 1.65 —— 51.40 ± 4.10 ——

USTC-GIST

Settings Transformation ACC(%) △ACC(%) AUC(%) △AUC(%) F1(%) △F1(%)

(A) RIGHT 90o 64.98 ± 3.32 −0.54 70.73 ± 1.93 −1.79 45.11 ± 1.80 −0.17
(B) RIGHT 180o 64.33 ± 2.75 −1.19 𝟕𝟑.𝟒𝟏 ± 𝟏.𝟐𝟐 +0.89 43.40 ± 2.36 −1.88
(C) RIGHT 270o 63.75 ± 2.05 −1.77 70.86 ± 2.19 −1.66 𝟒𝟓.𝟑𝟖 ± 𝟐.𝟔𝟒 +0.10
(D) Random initialization (Train) 57.46 ± 4.70 −8.06 67.29 ± 4.61 −5.23 41.56 ± 2.97 −3.72
(E) Random initialization (Test) 60.29 ± 4.47 −5.23 69.07 ± 3.53 −3.45 40.69 ± 1.44 −4.59
(F) None 𝟔𝟓.𝟓𝟐 ± 𝟑.𝟕𝟔 —— 72.52 ± 1.63 —— 45.28 ± 2.63 ——
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