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Abstract. Automatic analysis of histopathological whole slide images
(WSIs) is a challenging task. In this paper, we designed two deep learning
structures based on a fully convolutional network (FCN) and a convolu-
tional neural network (CNN), to achieve the segmentation of carcinoma
regions from WSIs. FCN is developed for segmentation problems and
CNN focuses on classification. We designed experiments to compare the
performances of the two methods. The results demonstrated that CNN
performs as well as FCN when applied to WSIs in high resolution. Fur-
thermore, to leverage the advantages of CNN and FCN, we integrate the
two methods to obtain a complete framework for lung cancer segmen-
tation. The proposed methods were evaluated on the ACDC-LungHP
dataset. The final dice coefficient for cancerous region segmentation is
0.770.

Keywords: Image segmentation · Computational pathology · CNN ·
FCN · Lung cancer.

1 Introduction

Digital pathology has been gradually introduced in clinical practice. However,
the manual analysis of whole-slide images (WSIs) is a time-consuming task for
pathologists and prone to errors or intra-observer variability. The limited knowl-
edge of pathologists also influences the veracity of diagnosis. As such, automatic
analysis of WSIs seems to be particular importance at the background of high
incidence of cancer. To relieve the dilemma we are facing [1], a large number of
researchers all around the world focus on studying algorithms for the automatic
analysis of WSIs.

In recent years, an increasing number of automatic analysis methods for WSIs
have been developed based on machine learning algorithms. Cancerous region
segmentation is a popular application among the existing methods based on deep
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learning networks. However, it’s difficult to process a WSI directly using recent
deep learning methods because of its high pixel resolution. Therefore, the first
step is to divide the WSI into small patches and segment the cancerous regions
patch by patch. Some segmentation methods for nature images are usually ap-
plied to WSIs analysis. For segmentation, one of the classic networks is Fully
convolutional network (FCN) [8]. FCN is to segment images based on pixel-level,
the input and output are both 2-D images with the same size. The segmentation
results of the region of interest can be directly obtained. There are also many
segmentation methods: SegNet [12], CRFs [14], DeepLab [4] and some aimed at
WSIs, for instance, U-Net proposed in [9] adopt overlap-tile strategy for seamless
segmentation of arbitrary large images and Yang el. [13] combined U-Net and
multi-task cascade network to segment WSIs and achieved better accuracy.

Besides FCN, convolutional neural networks (CNNs) including DenseNet [3],
ResNet [2], GooLeNet [11] and graph CNN for survival analysis [5] are also
widely applied to the segmentation of WSIs. But the WSI should be firstly
divided into small patches based on sliding window strategy because of the high
resolution. Then, the patches are fed to the network and the labels of the patches
are predicted. The segmentation results will be generated from the up-sampled
probability maps similar to the result of FCN. This method is not sensitive to
boundaries, while, for practical application, the segmentation result is sufficient
to analyze WSI for pathologists. In addition, the small blank regions among
the tissue would not be excessively segmented and pathologists can get a more
integrated results.

In this paper, we conducted a series of experiments to segment cancerous
regions from WSIs utilizing FCN and CNN frameworks and verified the feasibil-
ity and effectiveness of the two methods (FCN and CNN). Then, we compared
the results from the two methods and found that they equally performed. All
of our experiments are completed on a public lung histopathology dataset of
ACDC-LungHP challenge [6].

Our work addresses the segmentation of lung carcinoma from WSIs. The
main contributions of this paper can be summarized as:

1) We designed two complete strategies for lung carcinoma segmentation based
on CNN and FCN, respectively.

2) We evaluated the accuracy and running time of CNN-based and FCN-based
strategies and compared the segmentation performance of the two strategies.

3) To leverage the advantages of both CNN and FCN, we proposed an inte-
grated flowchart for lung carcinoma segmentation. Our method was evalu-
ated on the ACDC-LungHP challenge and achieved the 4th rank with a dice
coefficient 0.770.

The details of our methods and their results comparison are introduced in
the following sections.
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2 METHOD

The flowchart of our methods is illustrated in Fig. 1. To analyze histopathology
images, pixel-wise segmentation based on FCN will be designed to segment lung
carcinoma. Because histopathology WSIs are in high resolution, CNN for patch-
level classification can accomplish the segmentation task when the patches are
small enough relative to the whole slide. The ensemble of two networks is to
leverage both advantages and further improve the segmentation performance.

Fig. 1. The flowchart of our methods. It contains 3 sections: CNN, FCN and ensemble.

2.1 Segmentation based on FCN

FCN is a conventional method for image segmentation. FCN framework can be
used to process WSIs the same as nature images by dividing the whole WSI into
smaller patches with size of 224×224. The FCN structure was designed based on
DenseNet-1 structure [3], as shown in Fig. 2. To limit the computation, the last
dense block of DenseNet structure was removed and two transposed convolution
layers were connected instead, up-sampling the feature map to 56× 56. Namely,
the side length of output is 1/4 to that of the input. Then, dice loss [10] and focal
loss [7] were applied to train the networks with label masks. when predicting, the
testing WSI was processed by the trained FCN with a sliding window of 1280×
1280 pixels. To relieve the effect of the window border, the window region was
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padded to 1536×1536 pixels before feeding into the FCN. In corresponding, the
output was cropped to remove the padded regions. After prediction, a probability
map in high resolution was generated. Then, the segmentation was completed
by the threshold on the probability maps.

Fig. 2. The structure of FCN based on DenseNet.

2.2 Segmentation based on CNN

CNNs have been proven effective in image classification and have been suc-
cessfully introduced into histopathological image analysis because of the high
resolution of WSIs. Specifically, to increase comparability, we also employed
DenseNet-121 structure [3] with 2 output neurons(as shown in Fig. 3) as the
classifier of cancer patches. The network was trained from randomly initial pa-
rameters. To relieve overfitting, color noise was randomly added to the patches.
As for prediction, the testing WSIs were divided into patches (the same size
with the CNN input) following the sliding window paradigm with sliding step
set 112 (half of the patch side length) and fed into DenseNet structure. For each
window, the output of the positive neural node was recorded and regarded as
the probability of cancer. Thereby, a probability mat that indicates the location
of cancerous patches was obtained after the sliding window paradigm. Then the
mat was up-sampled to fit the original size of WSI. Finally, a threshold was
selected to generate the mask for the WSI.

2.3 Ensemble

Finally, we have tried to assemble the probability maps obtained by the two
frameworks. Specifically, the maps were averaged and then segmented by a
threshold. The CNN can classify a patch into one single category according
to the threshold. The small blank regions among the tissue would not be exces-
sively segmented. Thereby, the cancerous regions segmented by CNN are more
integrated than those obtained by FCN structure. On the contrary, the FCN can
generate elaborate borders of tissue, since it is designed for pixel-level segmen-
tation. To leverage the both advantages, we fuse the two results and aim at a



A Comparative Study of CNN and FCN 5

Fig. 3. The structure of CNN based on DenseNet-121.

better accuracy. A diagram as shown in Fig. 4 indicates the process of generating
segmentation results.

Fig. 4. The flowchart of generating masks from probability maps. The probability
matrix obtained from CNN is up-sampled 7 times, to the same size with FCN and
averaged with the probability matrix of FCN. A threshold (”Trd” in the figure) is
applied to segment the averaged probability matrix. Finally, the segmentation result
is resized 16 times to generate the pixel-wise segmentation result of the WSI.

3 experiments

3.1 Experimental setting

The proposed method was implemented in python. The experiments that in-
volves CNNs were conducted based on the mxnet framework and the experi-
ments for FCNs were on the tensorflow platform. The training patches along
with the labels were transformed to the formats the platforms required.

All the experiments were conducted on a computer with an Intel Core i7-
7700k CPU of 4.2 GHz and a GPU of Nvidia GTX 1080Ti.
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3.2 Data preparation

The data used in the experiments are ACDC-LungHP dataset. It concludes a
mass of lung cancer biopsy samples stained with hematoxylin and eosin (H&E).
To train the neural networks, we designed a flowchart (as shown in Fig. 5) to
generate training samples from the WSIs. 150 WSIs with annotations are used to
train our networks, among them, 80% are used as training set and the remaining
are validation set.

At first, a bounding box was manually annotated to locate the tissue regions
for each WSI. To reduce the computation, a threshold was applied to coarsely
filter the blank areas (pure white and black pixels). Then, square patches in size
of 224×224 pixels for CNN and 256×256 pixels for FCN were randomly sampled
from the tissue regions to establish the training datasets. To balance the samples
from each WSI, the patches from WSIs with small tissue regions were augmented
through randomly flipping & rotating. Correspondingly, the patches from large
WSIs were randomly reduced. Overall, about 2000 positive (contain more than
50% cancerous pixels referring to the annotation) and 2000 negative (less than
10% cancerous pixels) patches were generated from each WSI. For the training of
FCNs, the mask of cancerous pixels for each patch was simultaneously cropped
and used as the ground truth. All the patches and the corresponding labels and
masks were shuffled to ensure each batch could contain the general allocation of
the WSI data.

Fig. 5. The process of generating datasets for CNN and FCN.

3.3 Training

The CNN structure used in our experiment is the DenseNet-121 suggested in
[3]. The training patches are sampled from WSIs under the resolution of level 0
(defined in ASAP, the resolution is 40× lens) and randomly flipped, rotated and
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scaled for augmentation. The cross-entropy with softmax output is used as the
loss function. The SGD with momentum is applied as the optimizer.

The FCN consists of three dense blocks where the first block has 5 convo-
lutional layers and the other two have 8 convolutional layers. Before the first
dense block, two convolutional layers with 3× 3 kernels are applied on the input
images and each side of the input tensors is zero-padded by one pixel to keep
the feature-map size fixed. Following the dense blocks, two transposed convolu-
tional layers are used to upsample the feature maps to the same size of labels.
Focal loss and dice loss were considered in the training stage. We conducted the
experiment on WSIs under the resolution of level 2 (the pixel resolution is 1×
lens) and tried three kinds of loss combinations: focal loss only, dice loss only and
both. Then, the loss type that achieves the best result is chosen for subsequent
experiments.

3.4 Results and discussions

Hyper-parameter setting A number of experiments were conducted on the
training and validation sets to determine the settings of our proposed approach.
The CNN and FCN frameworks were conducted on resolution of level 0, level
1 and level 2 respectively. The results indicated that, as for CNN, the per-
formance of level 0 was the best and level 2 for FCN achieved best accuracy.
Besides, learning rate, batch size and growth rate were determined according to
the performance of the validation set.

Loss functions One of the important factors is loss function. As for segmenta-
tion, focal loss [7] and dice loss [10] are the most commonly used loss functions.
Focal loss is aimed at resolving the problem that the proportion of positive and
negative samples is seriously out of balance when addressing two-value segmen-
tation and bipartition. Dice loss pays more attention on the object needed be
segmented and is mainly used for biomedical images segmentation.

Several experiments were designed, including focal loss [7] employed, only
dice loss [10] and combination of focal loss and dice loss. After the prediction
mentioned in section 2.1 and 2.2, the results indicated that for FCN, the combi-
nation of both loss functions was more appropriate, for CNN, focal loss performed
not better than cross-entropy (commonly used for classification).

Segmentation accuracy The dice coefficient and running time for different
settings of FCN and CNN are presented in Table. 1. The FCN achieved a dice
score of 0.7525 and the CNN achieved a comparative score of 0.7528. It indi-
cates both the two strategies are adequate for histopathological whole slide image
analysis. Actually, the patch-based CNNs can generate a probability map of hun-
dreds by hundreds pixels from high-resolution WSI (Level 0), which is sufficient
to help pathologists recognize diagnostically relevant regions from the WSI. The
running time of FCN structure is much shorter than CNN. The main reason is
that the FCN structure uses a resolution that is much lower than that of CNN
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structure. Another reason is that the CNN structure utilizes overlapping patches
in the analysis, which has further increased the computation. Furthermore, to
exploit the advantages of the two frameworks, we assembled the CNN and FCN
structures that achieved the best results separately (using the approach pro-
vided in section 2.3). Consequently, the dice coefficient reached to 0.770. But, at
the same time, it needs more time including the CNN’s and FCN’s. The result
ranked No.4 in the ACDC-LungHP challenge. The leaderboard is listed in Table.
2.

By analysis of each WSI result, several challenging WSIs for our method
are displayed in Fig. 6, which are needed to be further improved. For visual-
ization, the segmentation results obtained by our framework can be converted
to free curves, which is able to be reloaded in ASAP tools. An instance of the
visualization is presented in Fig. 7

Table 1. The dice coefficients for different setting of the our methods.

Method Image levels Loss type Dice coefficient Time

CNN Level-0 Cross entropy loss 0.7528 328.8s

FCN Level-2
Focal loss 0.7184

7.2sDice loss 0.7213
Focal+Dice loss 0.7525

Combination
Level-0 Cross entropy loss

0.7700 336.0s
Level-2 Focal+Dice loss

Table 2. The leaderboard of ACDC-LungHP challenge 2019.

Rank Group name Score (Dice mean)

1 PINGAN Technology 0.8373
2 Lunit Inc 0.8297
3 Turbolag 0.7968
4 Ours 0.7700
5 BUAA 0.7659
6 Arontier 0.7638
7 Frederick National Laboratory for Cancer Research 0.7552
- Ours(CNN) 0.7528
- Ours(FCN) 0.7525
8 National Taiwan University of Science and Technology 0.7510
9 Skychain 0.7456
10 University of Maryland 0.7394
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Fig. 6. The challenging WSIs and corresponding segmentation masks.

Fig. 7. The flowchart of generating masks from probability maps.

4 Conclusion

According to the results, CNN and FCN both achieved satisfactory performance
for histopathological whole slide image analysis. Furthermore, the frameworks
based on CNN and FCN achieved comparable segmentation performance. It
indicates that the segmentation via patch-wise classification on a high resolution
could be equivalent to the segmentation by an FCN under lower resolutions. After
a combination of the CNN and FCN results, the metric was further improved.
It demonstrates that the information from high and low magnification of WSIs
are complementary.
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Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Com-
puter Assisted Intervention – MICCAI 2018. pp. 174–182. Springer International
Publishing, Cham (2018)

6. Li, Z., Hu, Z., Xu, J., Tan, T., Chen, H., Duan, Z., Liu, P., Tang, J., Cai, G.,
Ouyang, Q., Tang, Y., Litjens, G.J.S., Li, Q.: Computer-aided diagnosis of lung
carcinoma using deep learning - a pilot study. CoRR abs/1803.05471 (2018)

7. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: The IEEE International Conference on Computer Vision (ICCV)
(Oct 2017)

8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2015)

9. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015. pp. 234–241. Springer International Publishing, Cham (2015)

10. SORENSEN, T.A.: A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application to
analyses of the vegetation on danish commons. Biol. Skar. 5, 1–34 (1948),
https://ci.nii.ac.jp/naid/10008878962/en/

11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

12. V.Badrinarayanan, A.Kendall, R.: Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 39(12), 2481–2495 (Dec 2017).
https://doi.org/10.1109/TPAMI.2016.2644615

13. Yang, Q., Wu, K., Cheng, H., Gu, C., Liu, Y., Casey, S.P., Guan, X.: Cervical
nuclei segmentation in whole slide histopathology images using convolution neural
network. In: Yap, B.W., Mohamed, A.H., Berry, M.W. (eds.) Soft Computing in
Data Science. pp. 99–109. Springer Singapore, Singapore (2019)

14. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,
C., Torr, P.H.S.: Conditional random fields as recurrent neural networks. In: The
IEEE International Conference on Computer Vision (ICCV) (December 2015)




