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Abstract. Automatic segmentation of histopathological whole slide im-
ages (WSIs) is challenging due to the high resolution and large scale. In
this paper, we proposed a cascade strategy for fast segmentation of WSIs
based on convolutional neural networks. Our segmentation framework
consists of two U-Net structures which are trained with samples from
different magnifications. Meanwhile, we designed a novel cancer sensitive
loss (CSL), which is effective in improving the sensitivity of cancer seg-
mentation of the first network and reducing the false positive rate of the
second network. We conducted experiments on ACDC-LungHP dataset
and compared our method with 2 state-of-the-art segmentation methods
improved from U-Net. The experimental results have demonstrated that
the proposed method can improve the segmentation accuracy and mean-
while reduce the amount of computation. The dice score coefficient and
precision of lung cancer segmentation are 0.694 and 0.947, respectively,
which are superior to the compared methods.
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1 Introduction

The manual analysis of histopathological whole slide images (WSIs) is a time-
consuming task for pathologists and often suffers from errors and intra-observer
variability because of the diversity of cancerous organization [4]. Currently, the
number of pathologists cannot meet the requirement of cancer diagnosis, espe-
cially in remote regions of developing countries [3]. Therefore, it is significant to
develop automatic analysis of histopathological WSIs based on artificial intelli-
gence. Owing to the accessibility of large amounts of WSIs, the computer-aided
diagnosis methods based on histopathological WSIs have become popular [2, ?].

Tumor region segmentation is a popular topic in the domain of histopatho-
logical WSIs analysis. Generally, the results are desired to be a segmentation
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map which indicates the precise location of cancerous regions. To resolve the
segmentation tasks, some classical segmentation networks, such as, fully convo-
lutional networks (FCN) [7], U-Net [10], SegNet [12], were developed. However,
all the types of objects in a WSI are equally regarded in both the training
and predicting stages of these networks. The challenging area related to cancer
diagnosis are insufficiently concerned, which limited the performance of segmen-
tation. Moreover, the widespread background and negative regions that are easy
to segment consumes redundant computation. In recent years, zoom-in-net [13],
cascade-net [14] and scan-net [6] have been proposed to reduce the computa-
tion amount raised by large scale images. Besides, a novel attention gate [9] was
applied to the common U-Net to highlight the useful features for various tasks
and reduce computation while increasing the segmentation accuracy. Neverthe-
less, they did not design specific mechanism for the segmentation of challenging
cancerous regions in the histopathological WSIs.

Fig. 1. The Cancer Sensitive Cascaded Networks proposed in this paper, where the
architecture consists of two stages based on two U-Nets. Stage 1 is trained with samples
from a low magnification to obtain the segmentation outline. Stage 2 is trained with
a higher magnification to refine the segmentation results according to the probability
map output by the first stage.

In this paper, we propose a novel Cancer Sensitive Cascaded Network (CSC-
Net) for the segmentation of histopathological WSIs. The CSC-Net consists of
two U-Net structures [10]. The first network is used to comprehensively segment
cancerous regions and filter blank background and negative area to reduce com-
putation for the next high-resolution network. The second network specializes in
further refining cancerous regions segmented in the first stage and meanwhile fil-
tering the false positive regions that are mis-segmented. Aiming at our CSC-Net,
we designed a specific Cancer Sensitive Loss (CSL) to guarantee a high recall
of cancerous regions in the first stage and ensure the accuracy of segmentation
in the second stage. We conducted experiments on the ACDC-LungHP dataset
and the results have demonstrated that our method performed better than the
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existing methods in regards of accuracy and running time. The contribution in
this paper includes 1) a novel cascade framework for cancerous regions segmen-
tation from histopathological WSIs and 2) a novel cancer sensitive loss function
for the cascaded framework.

2 Methodology

The pipeline of the proposed CSC-Net is shown in Fig. 1. The structure of cas-
caded networks and cancer sensitive loss functions are two essential components
in our method, which are detailed in this section.

2.1 Cascaded Networks

A WSI contains a number of cancer-free regions that can be easily recognized
by automatic analysis algorithms even at low magnifications. Therefore, it is
unnecessary to segment the entire WSI at high magnifications where the amount
of computation is times higher than that at lower magnifications. While, the tiny
and boundary cancerous regions (as shown in Fig. 2) are challenging to segment.
And they need to be processed in a higher resolution to ensure an accurate
segmentation result.

Fig. 2. A WSI in our dataset, where the regions encircled with blue curves are cancer
tissues and the zoom-in patch shows the tiny cancerous spots and borders that are
difficult to segment.

The proposed cascaded framework aims at the challenge of histopathological
WSIs segmentation including accuracy and computational efficiency. The cas-
caded networks consist of two stages. For the first stage (as illustrated in the
upper part of Fig. 1), we train the U-Net with samples at low magnification. It is
used to filter the pixels which are easy to recognize (such as most of the negative
area) and obtain the glancing regions of probable cancerous tissues. Then, we
train the second network with the probable cancerous tissues on higher magnifi-
cation to optimize the cancerous regions. The regions fed to the second network
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are sampled based on the probability map output by the first network. Specifi-
cally, a sliding-window in size of n×n is applied to the probability map and the
probable regions are determined by a threshold t referring to the equation

1

n2

n2∑
k=1

pk > t, (1)

where pk is the cancerous probability of the k-th pixel that output by the
first network. As the samples to train the second network do not involve easy-
recognized cancer-free patches, the trained network is potential to focus on dis-
tinguishing the challenging regions and thus is able to improve the segmentation
performance.

When predicting, the WSI is first fed to the low-resolution network. Then,
the patches filtered by Eq. 1 are extracted at high magnification and fed to the
high-resolution network to refine the segmentation results. Compared with the
segmentation methods that directly process WSIs at a high magnification, the
cascade strategy proposed in this paper can improve the segmentation accuracy
and meanwhile reduce the amount of computation.

2.2 Cancer Sensitive Loss

In the field of medical images segmentation, Dice score coefficient (DSC) [11] is
a most frequently used metric to evaluate the segmentation results. DSC is used
to calculate the overlapping rate between prediction region and ground truth.
The 2-class DSC formula adopted in this paper is illustrated in Eq. 2:

DSCc =
2
∑N
i=1 picgic + ε∑N

i=1 pic +
∑N
i=1 gic + ε

, (2)

where pic ∈ [0, 1] is the predicted probability of the i-th pixel to the c-th class and
gic is the label with gic = 1 representing cancerous pixel and gic = 0, otherwise.
N is the total number of pixels in WSIs and ε is used to protect the division
operation.

Dice Loss (DL) [8] is a widely used loss function in medical image segmenta-
tion, which is based on DSC and defined as

DL =
∑
c

(1−DSCc) . (3)

The limitation of the DL is that false positive (FP) and false negative (FN)
get equal attentions. As for our cascaded networks, the requirements of two
stages are different. The first stage is expected to be sensitive to the cancerous
area and achieve a high recall and the second is supposed to get more accurate
segmentation results. Aiming at the motivation of the cascaded network, we
proposed a novel Cancer Sensitive Loss (CSL) function based on DL. The CSL
is defined as

CSL =
∑
c

(1−DSCc)λ , (4)
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where λ ∈ (1,∞) is a coefficient to balance the penalty on FP and FN. Sup-
posing a round ground truth with an area of 1, we tune the area of a predicted
foreground region that has its center within the ground truth and observe the
change of CSL to the area of the region. The curves as functions of the fore-
ground regions are illustrated in Fig. 3, where a line indicating a constant loss
(e.g. 0.2) with black arrows is used to point out the effect of λ to the original DL.
Obviously, the λ with a value above 1 can loose penalty of the predictions that
are already correct to the ground truth and meanwhile assigns a lower loss for
the segmentation with large false positive pixels. Specifically for histopathologi-
cal image segmentation, the CSL encourages the network has a high sensitivity
for cancerous region segmentation. Therefore, we train the the first network with
the proposed CSL in our cascaded structure to ensure the cancerous regions can
successfully go through the first network and will be further considered at higher
magnification by the second network. We tuned the λ to assess the CSL in the
training of the network and found that λ = 2.5 is the most appropriate to the
first cascaded network. As for the second stage, λ ∈ (0, 1) become our considera-
tion because the loss value is bigger than dice loss when the segmentation result
is not accurate whether with high FP or FN (as the vertical line shown in Fig.
3).

Fig. 3. The curves of the proposed cancer sensitive loss as functions of the cancerous
area segmented by the networks, where the area of the ground truth is supposed as 1.
The horizontal indicates loss = 0.2.
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Table 1. Quantitative comparison between the CSC-Net and other existing methods.

Model DSC Recall Precision Time (min)

Attention U-Net (10×) [9] 0.667 0.699 0.945 50.17
Multi-scale-input Attention U-Net (10×) [1] 0.635 0.647 0.941 70

U-Net + Cross Entropy (5×) 0.487 0.434 0.923 11
U-Net + Cross Entropy (10×) 0.615 0.592 0.939 57.83
U-Net + Cross Entropy (cascade) 0.610 0.574 0.939 28.17

U-Net + DL (5×) 0.617 0.640 0.937 11.67
U-Net + DL (10×) 0.675 0.706 0.946 56.5
U-Net + DL (cascade) 0.674 0.710 0.946 28.5

U-Net + FTL (5×) 0.628 0.656 0.939 11.33
U-Net + FTL (10×) 0.664 0.772 0.943 57.33
U-Net + FTL (cascade) 0.664 0.764 0.944 27.67

U-Net + CSL (5×) 0.674 0.801 0.944 11.5
U-Net + CSL (10×) 0.690 0.788 0.945 57.33
U-Net + CSL (cascade) 0.694 0.792 0.947 27.33

3 Experiments

We verified our CSC-Net on ACDC-LungHP dataset [5] which consists of 150
lung cancer WSIs in high resolution up to 170, 000×80, 000 pixels (by 40× object
lens). This dataset includes WSIs with different cancerous regions proportion. We
randomly chose 100 WSIs with a 80-20 train-validation split and divided them
into smaller patches with size of 512 × 512 to train the first network. For the
second network, the patch size was set to 1024×1024 to ensure a patch contains
the same amount of information as that in the first stage. The remainder 50
WSIs were used to validate our network by sliding-window setup.

To demonstrate the effectiveness of our cascade strategy, we adopted U-Net
[10] as the basic network to construct our cascaded networks. The U-Net in each
stage includes 4 pooling layers, 4 up-sampling layers as shown in Fig. 1. We
first evaluated our cascade strategy on existing loss functions, including cross
entropy, dice loss and focal Tversky loss. The thresholds in the Eq. 1 are set
to t = 0.05 according to the best performance of validation data. Finally, we
compared the CSC-Net with two improved U-Net structures, attention U-Net
[9] and multi-scale-input attention U-Net [1].

All the experiments were conducted on a computer with an Intel Core i7-
7700k CPU of 4.2 GHz. To improve the training speed, the parallel training
model was adopted in the U-Net structure using two GPUs of Nvidia GTX
1080Ti.

4 Results and Discussions

Table 1 quantitatively shows the performance of the proposed CSC-Net and sev-
eral comparision methods. Dice score coefficient (DSC), recall, precision and the
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Fig. 4. Visualization of the segmentation results at different stages, where (a) is the
original WSI, (b) is the intermediate results output by the low-resolution network, (c)
is the final segmentation results output by the high-resolution network and (d) is the
ground truth.

running time were used to evaluate our method. The running time is the total
time of processing the whole 50 testing WSIs. And the time of cascaded networks
consists of the time consumed at the two stages. Overall, our CSC-Net performed
the best with a DSC 0.694 and a precision 0.947. Specifically, for the DSC, our
method outperformed the attention U-Net [9] by 4.05% and the multi-scale-input
attention U-net [1] by 9.29%. The two compared methods were designed to seg-
ment WSIs in a single high magnification and did not focus on the challenging
or easy-recognized regions related to cancer diagnosis. In contrast, our frame-
work filtered the easy-recognized regions through the low-magnification network
and make the high-magnification network focus on distinguishing cancer regions
and hard negative regions, and therefore achieved better performance for cancer
segmentation. Benefited by the cascaded segmentation structure, our framework
consumed about only half of the running time compared to the methods using
single high magnification of WSIs.

Table. 1 also presents the comparisons for different loss functions. It is obvious
that the proposed CSL function achieved the best performance. The method U-
Net-CSL achieved a recall of 0.801, which was much higher than those based on
other loss functions and trained under 5× lenses. The high recall has ensured
more cancerous candidates could pass the first network and thereby delivered a
better segmentation result. Furthermore, The results within each common loss
function also demonstrated the effectiveness of the proposed cascaded strategy.

Several representational WSIs segmentation results is displayed in Fig. 4.
It shows that our CSC-Net segmented the outline of the cancerous regions in
the first stage and refined the detail within the outline, the qualitative result is
consistent with the quantitative analysis.
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5 Conclusion

In this paper, we proposed a cancer sensitive cascaded network (CSC-Net), in-
cluding the cascade strategy and a cancer sensitive loss (CSL) function. The cas-
cade strategy is effective in improving the accuracy of segmentation result while
reducing about half of the running time consumed by common methods. The
cancer sensitive loss function designed for our cascaded structure can improve
the sensitivity of the first network and finally deliver a more precise segmenta-
tion result. The experimental results indicted that the cascaded network trained
with CSL outperformed the state-of-the-art methods. The future work will focus
on designing an end-to-end cascaded structure to further improve accuracy and
efficiency of our algorithm.
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