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Abstract. The development of artificial intelligence has significantly
impacted the predictive analysis of molecular biomarkers, which is crucial
for targeted cancer therapy. Traditional assessment of HER2 in breast
cancer utilizes both Hematoxylin and Eosin (H&E) and Immunohisto-
chemistry (IHC) stained slides. Recent models have sought to predict
HER2 status using H&E-stained slides to reduce reliance on the costly
and time-consuming IHC staining. However, these models overlook the
information from IHC staining. In this paper, we proposes a novel frame-
work that integrates IHC-stained WSIs during the training phase to en-
hance the HER2 prediction capabilities based on the H&E-stained WSIs.
This framework uses IHC-predicted HER2 status as a proxy task, em-
bedding the learned relevant information as prompts into the encoder
for H&E slides. Meanwhile, our model only requires H&E slides during
inference, which maintains the data-efficiency of the HER2 prediction
system. Experimental results show that our method achieves an AUC of
0.860 and a F1 score of 0.652 in the tasks of HER2 0/1+/2+/3+ status
grading for breast cancer, which significantly outperforms state-of-the-
art models.
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1 Introduction

With the rapid development of artificial intelligence, the prediction of molecular
biomarkers from pathology whole slide images (WSIs) has gained significant at-
tention due to its implications for targeted therapy. Human Epidermal Growth
Factor Receptor 2 (HER2) overexpression serves as a critical biomarker for diag-
nosing breast cancer [12,10]. In routine breast cancer diagnostics, hematoxylin
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Fig. 1: The overview of the proposed method. (A) illustrates the H&E-stained
WSIs encoding process, where the H&E patch tokens are updated by the
Position-aware cross attention module with H&E information and through H&E-
IHC interaction with IHC information. (B) illustrates the IHC-stained WSIs en-
coding process, where the IHC patch tokens are updated through cross attention.
This process, as a proxy task, is used only during the training phase.

and eosin (H&E) stained slides are initially employed to identify cancerous tis-
sue regions. Following this, Immunohistochemistry (IHC) staining and In Situ
Hybridization (ISH) techniques are used to confirm the presence of HER2 over-
expression [17]. Accurately predicting HER2 status using WSIs can significantly
influence treatment strategies, thereby improve patient outcomes[6].

In early research, manually designed image features coupled with classi-
fiers were employed to predict HER2 status from Immunohistochemistry (IHC)
stained slides [3,9]. Recently, deep learning techniques [13,11,20,14] have shown
substantial benefits in the analysis of IHC-stained slides, significantly enhanc-
ing the accuracy and efficiency of HER2 status prediction. Then, various deep
learning frameworks [16,1] have been developed to predict HER2 status using
H&E stained slides, aiming to reduce reliance on IHC staining which suffers
from longer processing times, higher costs, and increased complexity. Notably,
frameworks such as SlideGraph+ [8] and HEAT [2] utilize WSI-level graphs
to effectively capture spatial and structural information. These advanced graph-
based models significantly improve diagnostic accuracy with H&E-stained slides.
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However, these models do not harness the extensive data available from IHC
staining, which provides critical insights into HER2 expression. This omission of
detailed IHC data during model training could limit the predictive capabilities
and accuracy of systems relying solely on H&E-stained slides.

In this paper, we proposed a novel framework for HER2 status prediction
based on cooperative training of H&E-stained and IHC-stained WSIs. As il-
lustrated in Fig.1, our framework fully utilizes IHC-stained slides during the
training phase to guide the learning of the H&E encoder. This allows more ex-
plicit information from the IHC to be embedded into the encoding process of
H&E-stained slides. During the inference phase, the framework only requires
H&E-stained slides as input and does not depend on IHC slides. Experimental
results on a breast cancer dataset demonstrate that our method significantly
outperforms baseline models trained solely on H&E-stained slides, with a 2.0%
improvement in AUC and an 6.8% improvement in F1 score. The contribution
of this paper can be summarized into two key aspects:

1) During the training phase of the H&E encoder, we utilize the prediction of
HER2 status from IHC-stained slides as a proxy task. This proxy task allows the
model to capitalize on the detailed information specific to HER2 from IHC slides,
thereby enhancing its capability to identify similar patterns in H&E stains. In
the inference phase, the model exclusively relies on H&E-stained slides, ensuring
a high data efficiency.

2) We designed a novel module named IHC-prompted cross-attention (IPCA),
as illustrated in Fig.2. The core idea of this module is to establish a set of learn-
able prompts that are shaped under the dual guidance of both H&E and IHC
branch. This design allows the IPCA module to integrate IHC-specific patterns
into the H&E encoder, thus improving the model’s predictive accuracy and ro-
bustness.

2 Methods

2.1 Problem Formulation

The flowchart of the proposed work is illustrated in Fig.1. After WSIs segmen-
tation and patch features extraction, we formulate the features extracted from

H&E and IHC slides as XHE ∈ Rnh
p×df and XIHC ∈ Rni

p×df , where nh
p and

ni
p are the numbers of patches segmented from H&E and IHC slides, and df is

the feature dimension. Simultaneously, by clustering the position coordinates of
the H&E patches, multiple position anchors are extracted and represented as

KHE ∈ Rnh
k×df , where nh

k is the number of anchors.

2.2 H&E-stained WSI encoding

Fig.2 illustrates the process of H&E encoding. We utilized the Position-aware
Cross-Attention (PACA) module in PAMA [18] to build the encoder for H&E-
stained WSIs. PACA can extract the local and global features for WSIs by
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Fig. 2: Detailed View of the proposed IPCA module. The module comprises two
main branches: the H&E branch (top) and the IHC branch (bottom) . The two
branches interact through a cross-attention mechanism to enhance the predictive
capability for HER2 status. Each branch includes transformations for queries,
keys, and values, along with an attention matrix and Softmax operation, facili-
tating feature updating and information transmission.

performing cross-attention operations between anchor tokens and patch tokens.

Specifically, a relative spatial distance matrix DHE ∈ Nnh
k×n

h
p and a relative

polar angle matrix PHE ∈ Nnh
k×n

h
p are calculated between the anchors and

patches, to describe the structural information of WSI.
In PACA, the anchors first collect local information from the patches by the

formula:

K̄
(n+1)
HE = σ

(
X

(n)
HEW

(n)
q · (X(n)

HEW
(n)
k )⊤ +Φ(n)

√
de

)
· (X(n)

HEW
(n)
v ), (1)

where Wl ∈ Rdf×de are the learnable parameters for the projection matrices,

where l = q, k, v stands for query, key, and value projections, K̄
(n+1)
HE is passed

to the next block after undergoing layer normalization and MLP operations to

obtain K
(n+1)
HE , and

Φ(n) = φd(D
(n)
HE) + φp(P

(n)
HE), (2)

where φd and φp are the embedding functions that map the distance and polar
angle information into corresponding embedding values.
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Symmetrically, each patch token captures the information of all anchors into
their own local representations using the equation:

X̄
(n)
HE←HE = σ

(
X

(n)
HEW

(n)
q · (K(n)

HEW
(n)
k )⊤ +Φ(n)⊤

√
de

)
· (K(n)

HEW
(n)
v ). (3)

This allows anchor tokens to update patch tokens based on valuable information
obtained from the kernels.

2.3 Proxy HER2 prediction task with IHC-stained WSIs

As illustrated in Fig.2, we constructed an additional branch alongside the H&E
encoder to serve as a proxy task. This branch processes IHC-stained WSIs and
symmetrically predicts the HER2 status. In each IPCA block, a set of prompts,
KIHC ∈ Rnk×df , are built to describe IHC-related patterns and will be optimized
throughout the training process. The module first takes learnable kernel tokens
KIHC and patch feature XIHC as input. Specifically, Query is derived from
KIHC , and the Key and Value are derived from XIHC , all of which are achieved

through linear transformations. Afterwards, we get the kernel tokens K̄
(n)
IHC with

IHC information:

K̄
(n)
IHC = σ

(
K

(n)
IHCW

(n)
q · (X(n)

IHCW
(n)
k )⊤√

de

)
· (X(n)

IHCW
(n)
v ). (4)

Following this, we utilize K̄
(n)
IHC with IHC information to perform another cross-

attention with XIHC . In this process, The Query is derived from XIHC , and

the Key and Value are derived from K̄
(n)
IHC . This process can be represented as

follows:

X̄
(n+1)
IHC = σ

(
X

(n)
IHCW

(n)
q · (K̄(n)

IHCW
(n)
k )⊤√

de

)
· (K̄(n)

IHCW
(n)
v ). (5)

As HER2 prediction with IHC-stained WSIs is a proxy task, Eq. 4 and Eq. 5 is
only used in the training phase.

2.4 IHC staining information Embedding

Based on Eq. 4 and Eq. 5, K
(n)
IHC is expected to learn the prototypes that are

crucial to recognize IHC features. Therefore, we can use K
(n)
IHC to assist the

H&E encoder to extract IHC-related features. To achieve this, we utilize an
cross attention, where the Query is derived from XHE , while the Key and Value
are derived from KIHC that contains the IHC information. The result of this
cross attention operation is an updated X̄HE←IHC , which is then combined with
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the X̄HE←HE to produce the final updated XHE . The mathematical description
of this process is as follows:

X̄
(n)
HE←IHC = σ

(
X

(n)
HEW

(n)
q · (K(n)

IHCW
(n)
k )⊤√

de

)
· (K(n)

IHCW
(n)
v ), (6)

X̄
(n+1)
HE = X̄

(n)
HE←HE + X̄

(n)
HE←IHC . (7)

These designs enable the IPCA module to effectively utilize the IHC staining
information in H&E WSI encoding even without the input of the IHC slides. It
remains data-efficient during inference by relying solely on H&E slides.

2.5 Objective and optimization

Before the model inference, we add [CLS] tokens to the patch tokens of both
H&E and IHC slides. After passing through n IPCA blocks, the [CLS] tokens are
unfolded and passed through a fully connected layer for HER2 status prediction,
categorizing into HER2 0, 1+, 2+, and 3+. Finally, we applied the cross-entropy
loss function to both [CLS] tokens for training.

Additionally, to promote the integration of IHC information into the H&E
encoder during training, we introduce a kernel masking (KM) strategy for a
certain proportion of KHE . This masking strategy encourages the encoder to
more effectively integrate IHC information into the H&E WSI encoding.

3 Experiments and Results

3.1 Implementation details

The dataset used in this study is a breast cancer dataset, collected from the First
Affiliated Hospital of USTC (University of Science and Technology of China).
This dataset comprises 358 cases, with each case including a H&E-stained slide
and a paired IHC-stained slide. The HER2 status of each case has been af-
firmed by expert pathologists. The dataset is split by a ratio of 7:3. Five-fold
cross-validation is performed on the training set to determine the model hyper-
parameters. Then, the determined model was used for testing.

The slides are segmented into 256×256 patches at a 20× magnification using
sliding window strategy where the background region of each slide was removed
by a threshold. Then, a pre-trained Vision Transformer (ViT-base) from PLIP
[4] was applied to extracting features for the patches.

During the training phase, the Adam optimizer [5] is used with a learning
rate of 1e-4, employing a cosine decay strategy. The batch size is set to 16.
The evaluation metrics include Accuracy (ACC), Macro-AUC, Weighted-AUC,
Macro-F1, and Weighted-F1. All experiments are conducted on two GPUs of
NVIDIA GeForce RTX 4090.
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Table 1: Hyper-parameter Experiments.

Settings Accuracy Macro-AUC Weighted-AUC Macro-F1 Weighted-F1

r = 0.75 0.617±0.003 0.837±0.024 0.847±0.024 0.586±0.034 0.617±0.028
r = 0.5 0.616±0.030 0.827±0.027 0.839±0.020 0.589±0.052 0.613±0.047
r = 0.25 0.616±0.010 0.833±0.026 0.842±0.021 0.572±0.030 0.603±0.018
r = 0 0.600±0.010 0.819±0.034 0.831±0.029 0.564±0.028 0.600±0.019

nk = 32 0.617±0.003 0.837±0.024 0.847±0.024 0.586±0.034 0.610±0.028
nk = 64 0.621±0.003 0.825±0.024 0.832±0.019 0.592±0.028 0.614±0.014
nk = 128 0.623±0.002 0.841±0.022 0.851±0.015 0.568±0.016 0.606±0.014
nk = 256 0.622±0.002 0.847±0.018 0.855±0.010 0.569±0.036 0.604±0.022

3.2 Hyper-parameter settings

We tuned the main hyper-parameters of our model through cross-validation.
The results are detailed in Table. 1. Initially, we focused on the kernel masking
strategy by tuning the mask-ratio in the range of [0, 0.25, 0.5 0.75]. The results
showed that a kernel mask-ratio of 0.75 provided the best performance. Based
on this experiment, we finally set the mask-ratio as 0.75. Subsequently, we tuned
the number of prompts nk of the shared KIHC from 32 to 256. The results show
that the performance improves as the number of shared prompts increase, and
nk = 256 delivered the best performance. Considering that a larger number of
prompts would bring greater computation to the model, we finally set nk = 256.

3.3 Comparison with SOTA methods

Then, we compared our model with six methods, inlcuding CLAM [7], Nystrom-
former [19], TransMIL [15], SlideGraph+ [8], HEAT [2], and PAMA [18]. These
methods are used for training and inference with H&E inputs. The results are
presented in Table. 2. Overall, our method demonstrates the best performance
across all evaluation metrics. In comparison to the second-best methods, our
method demonstrates a performance increase of 1.9% in Macro-AUC and 2.0%
in Weighted-AUC. Additionally, it shows improvements of 6.5% in Macro-F1
and 6.8% in Weighted-F1, respectively.

SlideGraph+ and HEAT, both based on graph-based approaches, are con-
sidered state-of-the-art methods for predicting HER2 status using H&E inputs.
PAMA can more effectively capture the context of WSIs based on its position-
aware and anchor cross-attention mechanisms compared to SlideGraph+ and
HEAT. It enables PAMA to achieve superior performance through enhanced
spatial and semantic representation capabilities. Our proposed method signifi-
cantly improves upon PAMA by leveraging an anchor structure combined with
an IHC-prompted mechanism. We plotted the Macro-average ROC curve for
PAMA and our method in Fig. 3. The AUC values for our method are consis-
tently higher than those for PAMA, particularly in predicting HER2 1+ and
HER2 2+ status, where we observed increases of 2.3% and 2.0%, respectively.



8 Yuping Wang et al.

Table 2: Comparison with the state-of-the-art methods.

Method Train Inference ACC M-AUC W-AUC M-F1 W-F1

CLAM [7] H&E H&E 0.572 0.823 0.825 0.543 0.567
Nystromformer [19] H&E H&E 0.554 0.806 0.811 0.510 0.536
TransMIL [15] H&E H&E 0.576 0.789 0.798 0.545 0.571
SlideGraph+ [8] H&E H&E 0.589 0.822 0.825 0.546 0.577
HEAT [2] H&E H&E 0.548 0.800 0.803 0.519 0.541
PAMA [18] H&E H&E 0.583 0.839 0.840 0.567 0.584

Ours w/o proxy H&E H&E 0.601 0.845 0.847 0.578 0.606
Ours H&E+IHC H&E 0.657 0.858 0.860 0.632 0.652

Fig. 3: Comparison of ROC curves between PAMA and our proposed method.

These improvements are crucial, as distinguishing these HER2 statuses using
only H&E inputs is challenging due to the subtle morphological features in H&E
slides. Our integration of IHC information enhances the discriminative power
of the H&E encoder, enabling it to more effectively differentiate these subtle
distinctions.

3.4 Ablation Study

We conducted ablation studies to evaluate the impact of embedding IHC infor-
mation in Table. 2. In Ours w/o proxy, we removed the IHC input in both the
training and inference stages but retained KIHC along with the kernel tokens of
H&E to update the patch tokens of H&E. Here, KIHC serves as prompts trained
to encapsulate information about H&E, which can be utilized during the infer-
ence phase. The results demonstrate that Ours w/o proxy outperforms PAMA
across all evaluation metrics, indicating the prompt enable leverages the learned
information. Furthermore, our method perform better than Ours w/o proxy in
AUC of 1.3% and F1 of 5.4%, underscoring the importance of embedding IHC
information for enhancing the H&E encoder’s capabilities.
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4 Conclusion

In this paper, we proposed a novel framework for HER2 prediction, which effec-
tively incorporates the information from IHC into the H&E encoder. This model
demonstrates data efficiency by utilizing both H&E and IHC inputs during train-
ing, while only requiring H&E input during inference. Ablation experiments val-
idate the effective integration of IHC information into the H&E encoder. Our
results exhibit superiority over existing HER2 prediction methods. Future work
will focus on training the framework using datasets across multiple organs to
enhance its generalization ability for HER2 status prediction.
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