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Abstract

Background and objective: Histological slides are stained with multiple dyes

to color different types of tissues. Color consistency of histological images is sig-

nificant for developing reliable computer-aided diagnosis (CAD) systems. How-

ever, the color appearance of digital histological images varies across different

specimen preparations, staining, and scanning situations. This variability af-

fects the diagnosis and decreases the accuracy of CAD approaches. It is impor-

tant and challenging to develop effective color normalization methods for digital

histological images.

Methods: In this study, we proposed a novel color normalization approach

for hematoxylin-eosin-stained whole slide images (WSIs) based on a designed

adaptive color deconvolution (ACD) algorithm. Using the ACD model, the

color deconvolution matrix for a specific WSI is estimated through an integrated

optimization. The prior knowledge, the density of staining, and the ratio for

different stains are simultaneously considered in the optimization, which delivers

consistent performance of stain operation. normalization results.

Results: The proposed ACD model is evaluated based on color normal-

∗Corresponding author: Zhiguo Jiang, Tel.:+86 10 82316173.

Preprint submitted to Elsevier July 25, 2019



ization, stain separation, computational complexity, and effectiveness for CAD

approaches on datasets of metastasis in lymph node. The results demonstrate

that the proposed normalization is effective and can preserve the structure of

objects in the WSI. The proposed model can be solved in 10 s. The area un-

der receiver operating characteristic curve for metastases image classification is

0.842 and 0.914 before and after the normalization.

Conclusions: The proposed normalization method has a robust perfor-

mance with hematoxylin-eosin-stained WSIs in various color appearances and

is superior to other methods in both quantitative and qualitative assessments.

The texture and structure of tissue in the images are well preserved in the

normalization. The proposed method is time-saving, which is applicable to

developing an efficient automatic CAD systems.

Keywords: Color normalization, digital pathology, stain separation, WSI,

CAD

1. Introduction

Cancer diagnosis still relies on histopathology [1], which involves the micro-

scopic examination of tissue to study the manifestations of the disease. Histo-

logical slides are stained with multiple dyes to color different types of tissues [2].

With the development of digital pathology, histological slides can be scanned

rapidly using advanced micro-scanners and stored as digital whole slide images

(WSIs). This enables pathologists to view slides on a screen. Based on digi-

tal WSIs, an increasing number of computer-aided-diagnosis (CAD) approaches

have emerged in the last two decades [3, 4, 5, 6]. A competent WSI-based CAD

system can help pathologists locate diagnostically relevant regions from the

WSIs [7, 8], which can help improve the efficiency and reliability of diagnoses.

Color consistency of digital WSIs is quite important for CAD based on WSI

analysis [9, 10]. In practical applications, the appearance of WSIs varies due

to different specimen preparations, staining situations, and section scanners

[11]. This variability affects the diagnosis and decreases the accuracy of CAD
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approaches. To overcome the variability, many color normalization methods for

histological images are proposed. [12]

A group of methods realized the normalization via histogram transforma-

tion in different color space, such as in Lab space [13], in HSV space [8], and in

RGB space [? ]. These methods were designed with reference to the normaliza-

tion of natural scene images and ignores the prior knowledge that histological

images are colored by multiple stains. More methods are based on the prior

knowledge that the color of WSIs is the combination of several independent

stains. One of the most popular methods is color deconvolution (CD) [14]. CD

has proven effective as a pre-processing method for WSIs in CAD approaches

[15, 16, 17, 18, 19, 20]. However, the parameters of CD are estimated by a set

of pixels selected manually for each stain component. The manual interaction

becomes a limitation of CD for developing CAD approaches. To relieve the de-

pendence of interaction, the automatic approach of estimating CD parameters

for specific images was proposed [21]. Then, the normalization methods based

on CD were emerged [22, 23]. The transformations between the source image

and the template image were established through CD and its inverse operation.

A set of these methods [23, 24, 11] established separate transformations for

different stains, where pixels belonging to the stains were classified or clustered

beforehand by designed algorithms. The robustness of these methods relies

on the pixel classification algorithm. Moreover, the normalization via multiple

transformations may cause structural artifacts at the border of different stain

classes.

In contrast, a number of methods proposed establishing an integral transfor-

mation on all the pixels for normalization [25, 26, 27, 28, 29]. Instead of directly

classifying pixels for different stain classes, the prior knowledge of section stain-

ing was embedded in the solving of the transformation model. The color of

the normalized images is relatively smoother than that obtained by multiple-

transformation-based methods, and thus the structure can be effectively pre-

served [25]. However, the estimation of CD parameters in these methods is

generally independent of the adjustment of overall intensity and proportion of
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the separated stains. [25, 29]. Especially, the proportion of stains is not consid-

ered into the solving of estimation model. This may risk a bias in the optimized

CD model, for which most of the pixels would be transformed to share the

appearance of single stain. Moreover, the normalization model relies on the

statistical properties of separated stains of the source image and the template

image, which generates additional computation.

In this study, we propose a novel color normalization method for hematoxylin-

eosin-stained (H&E-stained) WSIs based on a designed adaptive color decon-

volution (ACD) model. The normalization is realized through an integral color

transformation for pixels between the source image to the template image. Com-

pared to methods [24, 11], our approach does not rely on the classification of

stains. The parameters for the two stains (hematoxylin and eosin) are simul-

taneously estimated through an integral optimization. The structural informa-

tion of histological images can be effectively preserved. Different from methods

[25, 26, 27], the prior knowledge of H&E-stain, the proportion of different stains,

and the overall intensity of staining are simultaneously considered in the model-

ing of ACD, which effectively reduce the failure rate of estimation of CD param-

eters and thus delivers a more robust normalization performance. Furthermore,

the color normalization model can be directly obtained through multiply oper-

ation between the ACD parameters of the source and template images, which is

more convenient than other transformation-based methods [25, 27]. In terms of

computation, both the solution and application stages of the proposed method

only contain pixel-wise operation and involve no pixel interaction. It determines

the proposed method is light, efficient, and applicable for developing automatic

CAD programs and systems based on WSI analysis.

The proposed method was evaluated on aspects of color normalization, stain

separation, computational complexity, and effectiveness for CAD approaches

on four histopathological image dataset, and was compared with the state-of-

the-art methods [8? , 24, 11, 26, 25]. The experimental results have shown

that the proposed method is robust in color normalization for H&E-stained

histological images and is superior to the compared methods in both quantitative
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and qualitative assessments.

The remainder of this paper is organized as follows. Section 2 reviews the

related studies. Section 3 introduces the methodology of the proposed method.

The experiment is presented in Section 4. Section 5 provides necessary discus-

sions and suggests directions for future work. Finally, Section 6 summarizes the

contributions.

2. Related work

Most of the works related to our method are reviewed in this section. The

histogram-transformation-based methods are first discussed. Then, the methods

based on stain transformations are roughly classified and reviewed in two cat-

egories: separated-transformation-based methods, and integral-transformation-

based methods.

2.1. Histogram-transformation-based methods

Wang et al. [13] introduced a linear color transform method [30] into his-

tological images. The color is transformed to a template image with a linear

projection in lαβ color space. Zheng et al. [8] proposed normalizing WSIs in

HSV-space, in which the saturation and value channels were stretched linearly

for standardization. The method can normalize global illumination and satu-

ration of WSIs and has proven effective in improving the performance of WSI

analysis. Janowczyk et al. [? ] realized stain normalization using Sparse auto-

encoders (StaNoSA). Pixels in histological images were clustered based on the

features generated by the sparse auto-encoders and the pixels belonging to the

same cluster were transformed to the template image using a specific histogram

projection. These methods derive from nature scene image processing and barely

utilize the staining characteristic of histological images. As a result, the tissue

area and background were occasionally confused after the normalization [23].
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2.2. Separated-transformation-based methods

Based on the prior knowledge that histological images are colored by in-

dependent stains, the methods based on color deconvolution were proposed

[23, 22]. Typically, Khan et al. [24] proposed a specific color deconvolution

(SCD) algorithm. In this method, pixels belonging to the same stain were ex-

tracted through a classification model and an image-specific staining vector was

estimated for the stain by analyzing the RGB-allocation of these pixels. Based

on the staining vector, a non-linear mapping approach was designed to transfer

the image color to the template image. For more stable performance, the prior

knowledge of nuclei structure was considered for the pixel classification process.

In [11], the nuclei were detected by using the Hough transform [31] method.

Then, the pixels belonging to the nuclei and cytoplasm were accurately classi-

fied. However, the Hough transform method requires additional computation

for the normalization, which may become the bottleneck of an efficient CAD ap-

proach. Moreover, the separated-transformation-based methods probably bring

color discontinuity into normalized images, which may occasionally cause im-

proper structural changes within the nuclei.

2.3. Integral-transformation-based methods

Compared to the aforementioned methods, An increasing number of meth-

ods proposed to establish an integral transformation model for all pixels in the

images. These methods commonly deliver a more reasonable visual performance

and help preserve the local contrast in histological images. Zhou et al. [26] pro-

posed modifying the CD matrix [14] through an optimization for H&E-stained

histological images. The variable of the optimization is the exact CD matrix.

The objective function enforces the third channel (i.e., the background channel)

of the deconvolution result to be zero. However, the specificity of H&E-staining

is not considered in the optimization and the objective is almost equivalent to

reduce the weight of the third row of the CD matrix, for which the normalization

performance is limited.
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Refering to CD [14], the items in the CD matrix are not independent vari-

ables but decided by a stain color appearance (SCA) matrix. In contrast, the

SCA matrix is more reasonable than CD matrix to be the variables of normaliza-

tion models. Li et al. [32, 33] regarded the SCA matrix as the model variables

and applied non-negative matrix factorization (NMF) to solving the correspond-

ing model. Furthermore, sparse constraint was considered in NMF model for

the assumption that most of the pixels contain one type of stain [28, 25, 27].

Typically, Vahadane [25] designed a normalization approach for WSIs based on

sparse NMF (SNMF). The sparse constraint enhanced the recognition ability of

the model for independent stains. However, the SNMF model did not consider

the proportion of the stains in the solution. The color of image was occasionally

recognized to derive from the same stain, which caused color artifacts in the

normalization results.

Recently, Zanjani [34] et al. proposed a parametric model based on gener-

ative adversarial networks (GAN), where the generator was trained to convert

the color of source image to the template image. It contributes to a stable per-

formance of color normalization. While, the deep structure with constitutional

operations in the generator brings high computational cost into the normaliza-

tion, which may affect the efficiency of the entire CAD system.

Building on these methods, we propose an adaptive color deconvolution

(ACD) model for stain separation and color normalization of histological im-

ages. Besides the prior knowledge of H&E-stained images that utilized in recent

studies [25, 27, 26], the consideration for proportion of different stains, and the

overall intensity of staining are embedded in the model. Taking the SCA ma-

trix as the variables, the ACD model is solved through an integral optimization.

The proposed method inherits the advantage of the integral-transformation-

based methods [25, 27]. The structural information of histological images is

well preserved. Furthermore, because of the staining constraint and integral

optimization, the color artifacts are effectively reduced.
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Table 1: A.

Category

Model Consideration

Staining Structure Color

specificity preservation consistency

Histogram trans. No No (W) Yes (M)

Separated trans. Yes Yes (M) Yes (S)

Integral trans. Yes Yes (S) Yes (W)

3. Method

Blue channel

(b) (c) (e)

(a)
(f)

Optical-Density-Space RGB-SpaceRGB-Space

Red channel

Green channel

Blue channel

Hematoxylin channel

Eosin channel

Residual channel

Red channel

Green channel

Optical 

Density to 

RGB

Recombination 

with the Staining 

appearance 

Matrix of the 

Template WSI

Staining 

Separation by 

Adaptive Color 

Deconvolution 

Matrix 
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Density

(d)

Hematoxylin channel

Eosin channel

Residual channel

Weighting

Figure 1: Flowchart of the proposed normalization method, where (a) denotes the original

WSI (A featured sub-region of the WSI is chosen to display.), (b) is the visualization of R/G/B

channel in the optical-density-space, (c) shows the density of hematoxylin and the eosin stains

separated by an adaptive color deconvolution matrix, (d) displays the re-weighted stains, (e)

shows the R/G/B channel recombined with the stain parameters of the template WSI, and

(f) shows the result of the normalization.

3.1. Overview

Figure 1 presents the flowchart of the proposed normalization. For a certain

WSI, a group of pixels are sampled from the tissue region and converted into

optical density (OD) space. The normalized H&E components are obtained

based on an ACD matrix and a stain-weight matrix for the WSI. Finally, the

H and E components are recombined with the SCA matrix of a template WSI,
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achieving the color normalization. The approach to obtain the ACD matrix

and the stain-weight matrix are the essential of our method. In this section,

the ACD model is first introduced and then the normalization method based on

ACD is described.

3.2. Color deconvolution

The theory of color deconvolution (CD) [14] is the basis of ACD. CD is

proposed based on Beer-Lambert law. The stains are separated in the optical

density space. Letting xi ∈ R3×1 denote the value in RGB color space for the

i-th pixel in a WSI, CD can be briefly represented with the following equations

oi = − ln(xi/Imax)

si = D · oi
(1)

where oi ∈ R3×1 denotes the optical density (OD) of RGB channels, D ∈ R3×3

is the so-called color deconvolution matrix, and si ∈ R3×1 is the output that

contains stain densities. Imax denotes the intensity of background, i.e. the

value of pixel when no stained tissue is present. The exact value of Imax varies

with different section scanners. Generally Imax approximates the maximum of

digital image intensity (255 for 8-bit data format). For H&E-stained WSIs,

the separated densities of stains can be represented as si = (hi, ei, di)
T, where

hi and ei are the values for hematoxylin and eosin stains, respectively, and

di represents the residual of the separation. The deconvolution matrix D is

determined by a SCA matrix M with an inverse operation D = M−1. Further,

M can be manually measured using a designed experiment [14].

3.3. Adaptive color deconvolution

The ACD parameters are obtained by optimization. The variables, objective

and solving of the optimization are presented in the following sub-sections.

3.3.1. Variables

Considering that the deconvolution matrix D is determined by the SCA

matrix M, we propose directly optimizing M and then calculating D. Specifi-

cally, the SCA matrix can be decomposed as M = (mh,me,md), where mj ∈
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R3×1(j = h, e, d) is defined as SCA vector. In general, mj is a unit vector,

which describes the contributions of R, G, and B channels to the j-th stain. To

ensure mj ≡ 1, we propose representing mj using two degree variables as

mj = (cosαj sinβj , cosαj cosβj , sinαj)
T, j = h, e, d.

Then, the SCA matrix M can be represented by six independent degree vari-

ables. For convenience, the six degree variables are represented by a collection

ϕ = {αh, βh, αe, βe, αd, βd},

the SCA matrix decided by ϕ is represented as M(ϕ), and the corresponding

CD matrix is D(ϕ).

Since M is composed of unit vectors, the entire intensity of si is bounded

by the value of oi. To improve the capacity of the model for normalizing stain

intensities, a stain-weight matrix W = diag(wh, we, 1) is defined to modify the

CD algorithm (Eq. 1):

oi = − ln(xi/Imax)

si = W ·D · oi.
(2)

W is also regarded as the variable of ACD model and simultaneously obtained

with ϕ in the optimization.

3.3.2. Objective

An objective function about variables ϕ and W are defined. By resolving

the function, the optimized set of variables ϕ̂ and Ŵ are obtained, and then

the adaptive matrices M(ϕ̂) and D(ϕ̂) for the WSI are determined. For brevity,

M(ϕ̂) and D(ϕ̂) are also represented as M̂ and D̂ in this study.

The objective function for ACD is designed primarily on the basis of the

following prior knowledge: (1) There are two types of stains in H&E-stained

WSIs. Therefore, the third channel of the separated result (di) should be zero

in ideal situation. (2) H&E staining has high specificity. Hematoxylin mainly

stains nuclei and eosin mainly stains the cytoplasm and stroma. Therefore,
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majority of pixels in images alternatively contain H or E stain. Based on the

prior knowledge, the objective function is defined as

Lp(ϕ) =
1

N

N∑
i=1

d2i (ϕ) + λp
1

N

N∑
i=1

2hi(ϕ)ei(ϕ)

h2i (ϕ) + e2i (ϕ)
, (3)

where the first item of the function minimizes the residual of the separation,

the second item enforces the value of a pixel being assigned to the same stain

(H or E) after the separation, λp is the weight of the two items, and N is the

number of pixels used for the optimization.

Besides the features considered above, the balance of the two stains and the

overall density of staining are equally important for the normalization of WSIs,

which are also considered in the model. First, an energy function to control the

ratio of H and E components is defined:

Lb(ϕ) =

[
(1− η)

1

N

N∑
i=1

hi(ϕ)− η 1

N

N∑
i=1

ei(ϕ)

]2

, (4)

where η ∈ (0, 1) is defined as the balance parameter. Similarly, a function to

control the overall density of staining is defined:

Ls(ϕ) =

[
γ − 1

N

N∑
i=1

(hi(ϕ) + ei(ϕ))

]2

, (5)

where γ controls the desired density of staining.

Then, the objective function is modified as

L(ϕ) = Lp(ϕ) + λbLb(ϕ) + λsLs(ϕ), (6)

where λb and λs are the weights.

3.3.3. Solution

The objective is a function of variables ϕ and W, and thus the optimization

is described as

(ϕ̂,Ŵ) = arg min
(ϕ,W)

L(ϕ,W)

L(ϕ,W) is continuous and differentiable for variables ϕ and W. Therefore,

we utilized a gradient descent algorithm to solve it. The derivatives of the

objective function on the variables of the model are given in the appendix.
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In the optimization, only the pixels located on the tissue area are used. The

background (devoid of stain) area in WSIs is approximately white, and the op-

tical density of background pixels is close to zero. Therefore, the background

pixels can be easily filtered by a threshold [23, 11, 25]. Specifically, the pixels

within oi < Tback are recognized as background. Tback was tuned in the interval

of [0.2, 0.5] and determined as 0.28 for the most robust normalization perfor-

mance in the statistical assessment. Then, a tissue mask for the WSI can be

obtained. The pixels used in the optimization are randomly sampled from the

WSI based on the tissue mask.

3.4. Color normalization

After the Optimization, the adaptive variables D̂, Ŵ for ACD are deter-

mined. With D̂, the stain components of a WSI can be separated. Next, a

reconstruction result can be obtained by recombining the separated stain com-

ponents with the SCA matrix of a template WSI M. Finally, the normalization

is completed by converting the reconstruction result from OD space to RGB

color space. Specifically, for the i-th pixel xi of the WSI, the normalization can

be achieved by equations

oi = − ln(xi/Imax),

oi = M · ŴD̂ · oi,

xi = exp(−oi) · Imax,

(7)

where xi is the normalized result for xi. Because, the matrices M,Ŵ and D̂

are constant after the ACD, the three matrices can be regarded as a transform

matrix. Defining the transform matrix as T = MŴD̂, the normalization in

density space can be simplified as oi = T · oi.

4. Experiments and results

4.1. Setup

Four dataset, Camelyon-16, Camelyon-17, Motic-cervix, and Motic-lung,

were used in the experiments. Camelyon-16 and Camelyon-17 were obtained
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from the Camelyon challenge1 for cancer metastasis detection in the lymph

node [35, 36] and Motic-cervix and Motic-lung were supplied by Motic2. The

profiles are listed as follows.

• Camelyon-16 contains 400 H&E-stained lymph node WSIs, in which 270

WSIs are used for training and the remainder are used for testing. Re-

gions with cancer in these WSIs are annotated by pathologists. All the

annotations for Camelyon-16 are available.

• Camelyon-17 contains 1000 WSIs from 5 medical centers, in which 500

WSIs are used for training and the remainder are used for testing. The

annotations of testing WSIs are not yet available.

• Motic-cervix contains 47 WSIs from 47 patient with cervical cancer (in-

cluding adenocarcinoma and quamous carcinoma), in which regions with

cancer are annotated by pathologists.

• Motic-lung contains 39 WSIs from 39 patient with lung cancer (including

adenocarcinoma and quamous carcinoma), in which regions with cancer

are annotated by pathologists.

The quantitative and qualitative assessments were processed on the Camelyon-

17 dataset, since it consists of WSIs from 5 medical centers and contains rich

color variations. The Camelyon-16 dataset is used to evaluate the normalization

performance for the CAD method, because the labels for both the training and

testing set are already published. The experiments were also conducted on

Motic-cervix and Motic-lung datasets to evaluate the robustness of the proposed

method.

The normalized median intensity (NMI) measure [37] is used to quantita-

tively assess the consistency of normalization, NMI is defined as

NMI(I) = Med
i∈I

(ui)/P95
i∈I

(ui), (8)

1https://camelyon17.grand-challenge.org/
2Motic (Xiamen) Medical Diagnostic Systems Co. Ltd., Xiamen 361101, China
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Figure 2: NMI SDs for hyper-parameters of ACD model.
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Figure 3: NMI SDs for different training settings of ACD model.

where I denotes a WSI, ui denotes the mean value of R, G and B channels of

the i-th pixel in the WSI. Med() denotes the median value, and P95() denotes

the 95th percentile [11]. The standard deviation of the NMI values (NMI SD)

and coefficient of the variation (i.e., standard deviation divided by mean) of

the NMI values (NMI CV) for all testing WSIs were calculated and used as the

metrics. The lower the values of NMI SD and NMI CV, the more consistent

the normalization. To avoid the impact of extensive background regions in

the WSI and limit the amount of calculation, sub-images were sampled from

the tissue region of a WSI to substitute the WSI, and the NMI for the WSI

was calculated based on all the pixels in the sub-images. Specifically, 20 sub-
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images of 2048×2048 pixels were sampled and the percentage of tissue pixels in

each sub-image was controlled at more than 70% (according to the tissue mask

defined in section 3.3.3).

The gradient descent algorithm was empirically determined as AdaGrad [38]

for its desirable convergency. The model is trained with a mini-batch of 500

samples. The variable ϕ is initialized based on the SCA matrix suggested in

[14] and, W was initialized as an unitary matrix.

The algorithm was implemented in python with tensorflow [39] and was

processed on a computer with an Intel Core i7-7700k CPU of 4.2 GHz and a

RAM of 32GB. All the experiments were conducted on the same computer.

In this section, the the hyper-parameters of ACD model are first determined.

Then, the normalization performance of the proposed method is evaluated and

compared with the state-of-the-art methods.

4.2. Parameters setting

The hyper-parameters of ACD model and the settings in the model solving

are validated in this section. The experiments were conducted on the training set

of Camelyon-17 dataset. For each WSI, 100,000 pixels were randomly sampled

from the tissue area and used to solve the ACD model. The NMI SD for the

normalized WSIs under 40× lenses is used as the metric.

4.2.1. Hyper-parameters

There are five hyper-parameters λp, λb, λs, γ, η involved in our model. These

parameters were adjusted in large ranges. The curve of NMI SDs for different

setting of the hyper-parameters are presented in Fig. 2. A low NMI SD indicates

a good normalization performance. Note that the other parameters were fixed

when adjusting a specific parameter.

λp, λb, and λe are weights of different items involved in the cost function.

The results for different settings of the three parameters are shown in Fig. 2

(a-c). Obviously, when the three parameters were set to zero, the performance

of normalization deteriorated. It demonstrated that the items defined based
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on the prior knowledge (Eq. 3), the balance (Eq. 4), and the density (Eq. 5)

of staining are all necessary for a good normalization performance. When a

weight was set too large, the normalization performance also decreased. This is

because the cost function focused too much on the item controlled by the large

weight and ignored the effect of the other items. It indicates that a reliable

normalization model cannot be obtained under a single constraint. Finally, the

three hyper-parameters were selected for relatively low NMI SDs. Specifically,

the three parameters were set as λp = 0.002, λb = 10, and λe = 1 in the

following experiments.

In the ACD model, γ constrains the ratio of the staining components, and η

constrains the staining density, respectively. The setting of the two parameters

influences the visual performance. The normalization performance for the dif-

ferent settings of the two parameters are visualized in Fig. 4. According to the

statistical metrics (Fig. 2(d,e)), we suggested γ ∈ (0.25, 0.4) and η ∈ (0.55, 0.7)

for a consistent normalization. In the following experiments, γ is set to 0.3 and

η is set to 0.6 for a relative low NMI SD.

4.2.2. Optimization settings

The normalization performance is also influenced by the settings of the op-

timization, including the number of pixels, the magnification of pixel sampling,

and the number of interaction in the optimization. The curves of NMI SD for

different settings of these factors are given in Fig. 3. It can be seen from Fig.

3 (a) that the normalization is stable when the training step is set between 300

and 500. To limit the calculation amount of optimization, the step is set to 300

in the following experiments. In this experiment, the number of pixels used in

the optimization is ranged from 102 to 106. Fig. 3 (b) shows that the model

trained with 1,000 pixels can achieve a desirable normalization consistency with

a NMI SD of 0.0217. This indicates that the proposed model does not rely on

massive number of pixels. The metric improves from 0.0217 to 0.0210 when

the training pixels are increased from 1,000 to 100,000 and changes little when

further increasing the training pixels. Hence, the number of training pixels is
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(a) Template (b) γ = 0.3 (c) γ = 0.5 (d) γ = 0.7

(e) η = 0.3 (f) η = 0.5 (g) η = 0.7

Figure 4: Visual performance of the normalized image varied with the control parameters γ

and η, where (a) is a region from the template WSI, (b-d) display the results for different γ,

and (e-g) present the results for different eta.

set 100,000 in our experiments. The magnification of pixel sampling is also

important for the optimization. According to Fig. 3 (c), the proposed model

has a certain robustness to decrease in magnification. For reasonable normal-

ization results, pixels used in the optimization are sampled from WSIs under

20× lenses.

4.3. Comparison with the state-of-the-art

4.3.1. Methods for comparison

The color normalization methods developed from different aspects of the

histological slides are compared. Specifically, two methods introduced from

nature scene image processing proposed by Zheng et al. [8] and Janowczyk

et al. [? ], the separated-transformation-based methods proposed by Khan et

al. [24] and Bejnordi et al. [11], and other two integral-transformation-based

methods developed by Vahadane et al.[25] and Zhou et al.[26] are involved in

the comparison. The methodologies for these approaches are introduced in the
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related works (Section 2).

4.3.2. Quantitative comparison

The testing set of CAMLEYON17 is used in this experiment. The NMI

SD and NMI CV calculated based on all testing WSIs are used as metrics.

The results of the proposed method are obtained under the hyper-parameters

determined in the training set.

The results of the compared methods are presented on Table 2. It is shown

that the proposed method achieves the best performance in NMI SD and NMI

CV assessment. To intuitively present the allocation of NMI values for the

normalized images, the violin plots [40] for different methods are utilized (Fig.

5). The NMI values of the proposed method are the most clustered. It indicates

that the normalization performance of the proposed method is consistent.

The stability for staining separation of the compared methods was also eval-

uated. The normalization results were separated using CD with the parameters

of the template WSIs. The NMI metrics for independent staining components

are presented in Table 3. Correspondingly, violin plots of NMIs for independent

stains are given in Fig. 6. Janowczyk et al. [? ] achieves the best NMI SD in

the hematoxylin stain component, but the metrics for eosin are inferior to other

methods. ACD and Bejnordi et al. [11] achieve an equally good quantitative

performance for eosin component. While, the performance of ACD for hema-

toxylin is better than Bejnordi et al. [11]. Overall, ACD is the most consistent

for stain separation among all the compared methods.

4.3.3. Qualitative comparison

Fig. 7 visualizes the normalization performance of the compared methods

for five challenging WSIs in Camelyon-17 dataset. The method Zheng et al.

[8] is designed to eliminate the variances of illumination and saturation, and

has barely standardized the staining color of these images. In contrast, the

methods Janowczyk et al. [? ], Khan et al. [24], and Bejnordi et al [11] have

successfully transformed the color to the template WSI. However, various arti-
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Table 2: The comparisons of NMI SD and NMI CV for different normalization methods.

Method NMI SD NMI CV

Original 0.140 0.216

Zheng et al. [8] 0.077 0.117

Janowczyk et al.[? ] 0.027 0.037

Khan et al. [24] 0.049 0.067

Bejnordi et al. [11] 0.028 0.045

Vahadane et al. [25] 0.042 0.062

Zhou et al. [26] 0.054 0.095

The proposed 0.025 0.034

Table 3: The comparisons of NMI SD and NMI CV for different normalization methods, where

NMIh and NMIe represent the NMI for hematoxylin and eosin stains, respectively.

Method NMIh SD NMIh CV NMIe SD NMIe CV

Original 0.167 0.584 0.146 0.440

Zheng et al. [8] 0.092 0.321 0.081 0.242

Janowczyk et al. [? ] 0.017 0.071 0.184 0.392

Khan et al. [24] 0.055 0.203 0.089 0.214

Bejnordi et al. [11] 0.042 0.117 0.028 0.070

Vahadane et al. [25] 0.043 0.109 0.036 0.103

Zhou et al. [26] 0.160 0.362 0.142 0.363

The proposed 0.030 0.068 0.027 0.086
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Figure 5: Violin plots of NMIs for the compared methods, where the blue shadow presents the

allocation of NMIs for each plot, and the maximum, median, and minimum values for each

plot are signed with bars.

Figure 6: Violin plots of NMIs for independent stains, where H represents the hematoxylin

stain, E represents the eosin stain, the blue shadow presents the allocation of NMIs for each

plot, and the maximum, median, and minimum values for each plot are signed with bars
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Figure 7: Visual performance of ROIs cropped from five challenging WSIs for the compared

methods, in which the original ROIs are represented in the first column, the names of these

WSIs are given on the left, the normalization results of the compared methods are displayed

on the right, and the results that have serious artifacts are framed with red boxes.

facts appeared in the images normalized by the compared methods. To evaluate

the robustness of normalization, three pathologists were invited to inspect the

normalized results and the WSIs containing structure or color artifacts were

marked. The statistical results of the assessment are given in Table and the

results that contain typical artifacts were framed by red boxes in Fig. 7.

Specifically, the eosin stain and the background are occasionally confused in

the results of Janowczyk et al. [? ]. In Fig. 7(a), A certain amount of eosin

stain surrounding the nuclei is eliminated, which may change the structure of

cell in the image. For the same WSI, the result obtained by Bejnordi et al.
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Table 4: Statistical results in the visual assessment, where the number of WSIs that the three

pathologists marked containing structural or color artifacts are presented, and the average

number is given at the last column.

Method Path. #1 Path. #2 Path. #3 Average

Zheng et al. [8] 0.092 0.321 0.081 0.242

Janowczyk et al. [? ] 0.017 0.071 0.184 0.392

Khan et al. [24] 0.055 0.203 0.089 0.214

Bejnordi et al. [11] 0.042 0.117 0.028 0.070

Vahadane et al. [25] 0.043 0.109 0.036 0.103

Zhou et al. [26] 0.160 0.362 0.142 0.363

The proposed 0.030 0.068 0.027 0.086

[11] (Fig. 7(c)) exhibits ringing artifacts around nuclei. It is mainly because

that the pixels at the edge of nucleus regions are mis-classified as eosin stain,

which causes abrupt changes on the edge of these pixels. The results of Khan

et al. [24] also has the similar problem. In Fig. 7(b), the area of nuclei appar-

ently decreases, which will affect the performance of CAD approaches developed

on nuclei statistics. Compared to the methods above, the results obtained by

integral-transformation-based methods, Zhou et al. [26], Vahadane et al. [25],

and ACD, have reserved the structure of tissue in the images, and avoided the

artifacts discussed above. This property is significant to develop a reliable CAD

approach. On the other hand, these methods may produce color artifacts. For

instance, the result in Fig. 7(d) has unreasonable color appearance. That is

because the staining components are not correctly separated by Vahadane et al.

[25].

Overall, the proposed method can obtain both structure-preserving and

color-consistent normalization results for WSIs in various appearance. The vi-

sual performance is robust and superior to the compared methods.

4.3.4. Time complexity

The time complexity of color normalization methods is equally important

in application. Especially for an automatic CAD approach based on WSIs, the
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Table 5: The comparison of time complexity and the average running time for the estimation

of model parameters.

Method

Time complexity
Running time

Pre- Model

processing solution (second)

Zheng et al. [8] - O(nlog2n) 62.1

Janowczyk et al. [? ] -

O(n)

93.1

Khan et al. [24] O(n) 1420

Bejnordi et al. [11] O(n3) 370

Vahadane et al. [25] - 65.4

Zhou et al. [26] - 7.29

The proposed - 8.23

running time of the normalization module should not become a bottleneck for

the entire system. For the compared methods, the difference in computational

complexity mainly derives from the estimation of model parameters. The time

complexity for the pixel number n is given in Table 5. The methods proposed

by Khan et al. [24] and Bejnordi et al. [11] depend on pixel classification, which

is individually considered as pre-processing in Table 5. Khan et al. applied a

pixel-wise classifier and the computation is linearly related to the pixel number

n. Bejnordi et al. utilized Hough transform to detect nuclei, for which the time

complexity is O(n3). And in the stage of parameter estimation, the method

of Zheng et al. [8] involved sorting algorithm of pixel values, for which the

complexity is O(nlog2n). Other methods estimated the parameters based on

pixel-wise operation, and the complexity is O(n).

The average times required for model parameter estimation are given in

Table 5, where all the methods are implemented on CPU. Furthermore, the joint

results of the quantitative metric and running time of the compared methods

are presented in Fig. 8. For the proposed ACD model, the average time to

calculate the adaptive parameters is 8.23 s, which is relatively short compared

to a WSI-based CAD approach.
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Figure 8: Joint plot of NMI SD and average running time for computing the model parameters

for a WSI, where the time is counted in second and presented in logarithmic coordinate.

Janowczyk et al. [? ] and Bejnordi et al. [11], which are competitive in the

evaluation of NMI SD, respectively take 65 s and 370 s in average. Janowczyk

et al. [? ] utilized sparse auto-encoders to cluster pixels in different textures,

and Bejnordi et al. [11] applied Hough transform to detect the nuclei for pixel

classification. These operations extended the running time of the two meth-

ods. In contrast, the proposed method estimates the stain parameters using an

integrated optimization and involves no additional operation to identify differ-

ent types of pixels. Therefore, The proposed method is much faster than the

two methods. Zhou et al. [26] is simpler than our model, thereby taking less

time. However, the stability of the model cannot surpass that of ours. Over-

all, the proposed method is both effective and efficient for histological image

normalization.

4.3.5. Effectiveness in CAD

In recent years, the convolutional neural network (CNN) has become the

main algorithm for medical image analysis [41]. An increasing number of stud-
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ies have applied CNNs to histological image analysis [42, 35, 43, 44]. The recent

studies [9, 10] have shown that the normalization of histological images can

improve the performance of CNN-based CAD methods. We conducted exper-

iments to evaluate the improvement of the normalization methods for CNN

model. Camelyon-16 dataset was used in this experiment.

The classification of image patches is the major action of CNN in CAD

systems for WSI analysis. Hence, a CNN model for histological image patch

classification is established as the benchmark of this experiment. Specifically,

110,000 training images in size of 224 × 224 pixels were sampled from the 270

training WSIs, in which 55,000 patches contained metastases (positive samples)

while the others were normal (negative samples). In addition, 65,000 patches

were sampled from the testing WSIs to evaluate the performance of classifi-

cation. A ResNeXt [45] model with 7.2 × 106 parameters was trained on the

training patches for each normalization method. The optimizer was momentum

SGD with default setting of tensorflow. The receiver operating characteristic

(ROC) curves and the corresponding area under curve (AUC) values for the

testing set were calculated after 60,000 steps of training. The results are shown

in Fig. 9.

Overall, the proposed method achieves the most evident outcome, which in-

creases the AUC from 0.842 (the bench mark) to 0.914. All of the compared

methods are effective in improving the accuracy of the cancer image classifica-

tion. It indicates that the color normalization of histological images is necessary

for a good-quality CAD system.

4.4. Application performance on Motic datasets

To further evaluate the application performance of the proposed method on

WSIs containing other lesions, we also conducted experiments on Motic-cervix

and Motic-lung datasets. In this experiment, the parameters of ACD model were

the same as that determined on Camelyon dataset. The metrics for quantitative

assessment was calculated before and after the normalization. Furthermore, the

performance for improving the classification accuracy of CNN model (cancer
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Figure 9: Comparison of ROC curve and AUC in application of breast histological image

classification using different normalization methods.

versus non-cancer patches) was also evaluated, where half of the WSIs in each

dataset were regarded as training set and the rest for testing. The paradigm

of the evaluation is the same as that on Camelyon dataset. The quantitative

results are given in Tables 6 and 7. The visual performance of normalization is

presented in Figures 10 and 11.

5. Discussion

The ACD model can also be used for color transformation between any two

WSIs based on Eq. 7. The only modification is the transform matrix T. For

example, the color transform from WSI p to WSI q can be achieved with a

matrix

Tpq = (ŴqD̂q)
−1ŴpD̂p, (9)

where Ŵp and D̂p are the adaptive variables for WSI p, and Ŵq and D̂q are

the adaptive variables for WSI q. Note that the adaptive variables Ŵ and D̂

for a WSI needs to be solved only once after the digitalization of the WSI, and
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Table 6: Normalization results on Motic-cervix dataset

Metrics
NMI NMIh NMIe Classification

SD CV SD CV SD CV AUC

Original 0.071 0.087 0.107 0.551 0.188 0.683 0.831

Normalized 0.062 0.077 0.105 0.542 0.138 0.409 0.894

Table 7: Normalization results on Motic-lung dataset

Metrics
NMI NMIh NMIe Classification

SD CV SD CV SD CV AUC

Original 0.112 0.139 0.142 0.711 0.183 0.879 0.886

Normalized 0.089 0.108 0.154 0.834 0.164 0.658 0.911
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Figure 10: Normalized regions from different WSIs in Motic-cervix dataset.
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Figure 11: Normalized regions from different WSIs in Motic-lung dataset.

can be stored along with the WSI. When the color transform between any two

WSIs is required, the transform matrix can be immediately obtained using Eq.

9. Therefore, it is very convenient to develop online color transformation appli-
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cations for digital pathology systems (e.g. MoticGallery3) using the proposed

model.

Based on the transform matrix T, the normalization of the proposed method

is a pixel-wise transformation. It can be completed efficiently by parallel com-

puting on CPU or GPU. For further acceleration, a look-up-table (LUT) from

the original pixel values to the normalized pixel values can be established for the

transformation. Then, the normalization of the WSI can be efficiently achieved

through the LUT.

According to the visual assessment of pathologists, the proposed model has

the lowest failure rate. .....

In the evaluation for different number of pixels used in the solving of ACD

model, the results show that the thousands of pixels can deliver a consistent

performance of normalization (Fig. 2(b)). The main reason is that the pixels

used in the optimization are sampled from the tissue area (defined in section

3.3.3), and the staining in Camelyon dataset is relatively homogeneous in the

WSI. Hence, thousands of pixels can cover the staining condition of the WSI,

which makes the ACD model successfully estimate the stain appearance matrix.

for bad quality stain area. For more robust normalization performance, we set

the number of pixels to 100,000 in the experiments. We also tuned the number

in the experiment on Motic dataset and found that 100,000 pixels were sufficient

to the ACD model.

The normalization methods proposed by Khan et al. [24] and Bejnordi et al.

[11] are two typical methods based on pixel classification. In these methods, the

pixels in the WSI are classified to different classes of stains (including a class

of background). Then, pixels belonging to the same class are normalized based

on a specific color transform model. Once pixels sharing the similar color in

the original images are classified into different classes, the color of these pixels

may be quite different after the normalization. It will generate apparent color

discontinuity in the normalized WSIs. This type of color discontinuity mainly

3https://med.motic.com.MoticGallery/
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appears on the boundary of eosin and hematoxylin stains, which may cause

structural artifacts of nuclei (see Fig. 7 (b-c)).

The optimization in Zhou et al. [26] is similar with our model. However,

Zhou el al. used the deconvolution matrix D as the variable of the optimization,

and objective function did not consider the distinction, the balance, and the

overall density of the H and E stains. It makes the optimization mainly adjust

the third row of matrix D, and pay little attention to the first two rows in D

(i.e. the deconvolution parameters for H and E stains). Therefore, the color

appearance was not sufficiently transformed to the template WSI.

The model of Vahadane et al. [25] used staining appearance matrix M

as the variable. However, the optimization of Vahadane et al. was solved

by alternating between the staining matrix M and the stain density of pixels

(si). Specifically, M was optimized through a dictionary learning process based

on fixed density of training pixels, and then the density of these pixels were

estimated through sparse coding process based on fixed M. The two steps are

alternatively processed until the model converges. In contrast, our model is

solved through an integrated optimization, in which only the matrix M and

the wighted matrix W are the variables to be optimized. And the density of

training pixels can be directly calculated through matrix product operation (Eq.

2) in each interaction, which is efficient than that in Vahadane et al. [25]. It

contributes to a faster solution of our model.

In the experiment of image classification, the results based on Bejnordi et

al. [11], Janowczyk et al. [? ], Khan et al. [24], Vahadane et al. [25] and

Zhou et al. [26] cannot surpass the proposed model. The main reason is that

the normalized images of these methods contain various artifacts. Bejnordi et

al. [11], Janowczyk et al. [? ] and Khan et al. [24] may change the texture

or structure of tissue. The results of Vahadane et al. [25] and Zhou et al. [26]

have color distortion. These artifacts are detrimental for the CNN-model to

distinguish patterns in histological images. In comparison, our method performs

more robust than these methods in color normalization, and therefore achieves

better performance in the classification of histological images.

29



6. Conclusion

In this study, we proposed an efficient color normalization method for H&E-

stained histological WSIs based on an adaptive color deconvolution (ACD)

model. The ACD model does not rely on pixel classification algorithm and is

solved through end-to-end learning. The texture and structure of tissue in the

images are well preserved. The prior knowledge, the staining density, and the

staining ratio of different stains are simultaneously considered in the modeling

of ACD, which delivers a statistically consistent performance of normalization.

The entire flowchart of normalization involves only pixel-wise operation. The

average time of solving the ACD model is less than 10 second for a WSI, which

is applicable to automatic CAD systems. The future work will focus on devel-

oping automatic WSI analysis methods based on the proposed method. Future

work 1) using pixel classification or clustering approach to estimate the ratio

of H and E. 2) more general stain separation theory for stains do not satisfy

Beer-Lamber law.
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Appendix

The derivatives of the objective function (Eq.6) of the ACD model on the

variables are given in this section.

For a variable θ ∈ {αh, βh, αe, βe, αd, βd, wh, we}, the partial derivatives of

the variable can be calculated based on Eq.6 in the body of the paper as

∂L

∂θ
=
∂Lp
∂θ

+ λb
∂Lp
∂θ

+ λs
∂Ls
∂θ

, (10)
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where the items of ∂Lp/∂θ, ∂Lp/∂θ, and ∂Ls/∂θ are given as follows

∂Lp
∂θ

=
∂

∂θ

[
1

N

N∑
i=1

d2i + λp
1

N

N∑
i=1

2hiei
h2i + e2i

]

=
2

N

N∑
i=1

di
∂di
∂θ

+
2λp
N

N∑
i=1

[
(ei

∂hi

∂θ + hi
∂ei
∂θ )(h2i + e2i )

(h2i + e2i )
2

−
hiei(2hi

∂hi

∂θ + 2ei
∂ei
∂θ )

(h2i + e2i )
2

]

= −4λp
N

N∑
i=1

h2i ei
(h2i + e2i )

2

∂hi
∂θ

− 4λp
N

N∑
i=1

hie
2
i

(h2i + e2i )
2

∂ei
∂θ

+
2

N

N∑
i=1

di
∂di
∂θ

(11)

∂Lb
∂θ

=
∂

∂θ
[(1− η)

1

N

N∑
i=1

hi − η
1

N

N∑
i=1

ei]
2

= 2
√
Lb[

(1− η)

N

N∑
i=1

∂hi
∂θ
− η

N

N∑
i=1

∂ei
∂θ

]

= 2
√
Lb

(1− η)

N

N∑
i=1

∂hi
∂θ
− 2

√
Lb

η

N

N∑
i=1

∂ei
∂θ

(12)

∂Ls
∂θ

=
∂

∂θ

[
γ − 1

N

N∑
i=1

(hi + ei)

]2

= −2
√
Ls

1

N

N∑
i=1

(
∂hi
∂θ

+
∂ei
∂θ

)

= −2
√
Ls

1

N

N∑
i=1

∂hi
∂θ
− 2

√
Ls

1

N

N∑
i=1

∂ei
∂θ

(13)

From the definition of stains si = (hi, ei, di)
T, the partial derivatives of hi, ei, di

on θ can be represented by a vector

∂si
∂θ

= (
∂hi
∂θ

,
∂di
∂θ

,
∂di
∂θ

)T.
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Then, the calculation of ∂L/∂θ can be written as

∂L

∂θ
=

1

N

N∑
i=1

cT · ∂si
∂θ

, (14)

where c is a vector that consists of coefficients summarized from Equations

10-13:

c =


− 4λp

h2i ei
(h2i + e2i )

2
+ 2(1− η)λb

√
Lb − 2λs

√
Ls

− 4λp
hie

2
i

(h2i + e2i )
2
− 2ηλb

√
Lb − 2λs

√
Ls

2di


Next, the calculation of ∂si/∂θ is presented. From Eq.2 in the body of the

paper, it is
∂si
∂θ

=
∂

∂θ
(WDoi).

Here, W consists of the weighting variables wh and we, and D is a function

of degree variables ϕ. Thus, the partial derivatives of si on θ ∈ {wh, we} and

θ ∈ ϕ are discussed separately.

The partial derivatives of si on wh and we are

∂si
∂wh

= diag(1, 0, 0)Doi,
∂si
∂we

= diag(0, 1, 0)Doi. (15)

And, for variables θ ∈ ϕ,

∂si
∂θ

=
∂

∂θ
(WDoi) = W

∂D

∂θ
oi

= W
∂M−1

∂θ
oi

= WM−1 ∂M

∂θ
M−1oi

= WD
∂M

∂θ
Doi.

Specifically, the derivatives of M on each degree variables are

∂M

∂αh
= (

∂mh

∂αh
,0,0),

∂M

∂βh
= (

∂mh

∂βh
,0,0),

∂M

∂αe
= (0,

∂me

∂αe
,0),

∂M

∂βe
= (0,

∂me

∂βe
,0),

∂M

∂αd
= (0,0,

∂md

∂αd
),

∂M

∂βd
= (0,0,

∂md

∂βd
),

(16)
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and
∂mj

∂αj
= (− sinαj sinβj ,− sinαj cosβj , cosαj)

T,

∂mj

∂βj
= (cosαj cosβj ,− cosαj sinβj , 0),

j = h, e, d
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