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Size-scalable content-based histopathological image
retrieval from database that consists of WSIs
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Huaqiang Shi and Yu Zhao

Abstract—Content-based image retrieval (CBIR) has been
widely researched for histopathological images. It is challenging
to retrieve contently similar regions from histopathological whole
slide images (WSIs) for regions of interest (ROIs) in different size.
In this paper, we propose a novel CBIR framework for database
that consists of WSIs and size-scalable query ROIs. Each WSI
in the database is encoded into a matrix of binary codes. When
retrieving, a group of region proposals that have similar size with
the query ROI are firstly located in the database through an
efficient table-lookup approach. Then, these regions are ranked
by a designed multi-binary-code-based similarity measurement.
Finally, the top relevant regions and their locations in the WSIs as
well as the corresponding diagnostic information are returned to
assist pathologists. The effectiveness of the proposed framework
is evaluated on a fine-annotated WSI database of epithelial breast
tumors. The experimental results have proved that the proposed
framework is effective for retrieval from database that consists
of WSIs. Specifically, for query ROIs of 4096×4096 pixels, the
retrieval precision of the top 20 return has reached 96% and the
retrieval time is less than 1.5 second.

Index Terms—histopathological image, CBIR, WSI, binary
code, hashing, breast cancer

I. INTRODUCTION

The diagnosis of cancer using histopathological images is
a challenging task. Specifically for breast cancer, the precise
diagnosis with histopathological images is a difficult work due
to the diversity of breast lesions [1] and the subtle difference
between sub-categories of lesions in histopathological images.
In this situation, content-based histopathological image re-
trieval (CBHIR) is developed based on histopathological image
analysis (HIA) approaches [2], [3], [4] to aid pathologists. For
a query image, CBHIR can search for the database and return
images that are contently similar to the query image. Using
diagnostic information of these similar cases for reference,
doctors can comprehensively understand the case and reach a
more reasonable diagnosis.

The research of CBHIR for histopathological images can
date back to 1998. In [5], [6], Comaniciu et al. introduced a
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CBIR framework to retrieve the images that contain similar
cell nuclei for a query image. Then, some researchers [7],
[8], [9], [10] utilized the classical image features to depict
the histopathological images and achieved the retrieval for
histopathological images in cellar level and sub-image level.
However, histopathological images are much more complex
than natural images that using low-level features cannot dis-
criminatively represent the histopathological images. In recent
years, researchers applied the high-level feature extraction
models, such as manifold learning [11], [12], semantic analysis
[13], [14], [15], [16], [17], [18], spectral embedding [19],
etc., to the histopathological image representation, which im-
proved the performance of CBHIR. The approaches mentioned
above have been concentrated on the feature extraction from
histopathological images and the similarities among images
are measured based on feature vectors, which will raise a high
computation when retrieving from a large-scale database.

To satisfy the application for database consisting of massive
histopathological images, the efficiency of CBHIR is con-
sidered in the recent researches [20]. Zhang et al. [21][22]
introduced a supervised hashing method [23] into the CBHIR.
Instead of using high dimensional feature vectors to represent
histopathological images, they encoded each image into an
array of binary codes and stored it within tens of bits. Then
the similarities among images can be measured by Hamming
distance, which is able to be calculated very efficiently using
bitwise operations by computer.

Zhang et al. [21], [22] have provide an efficient CBHIR
approach for database of individual images. However, the
practical digital slide is stored in a spatially continuous
image with a size of more than 10K × 10K pixels and
the region of interest (ROI) is size-scalable according to
different diagnostic conditions. This makes it a challenging
task to retrieve eligible regions from database consisting of
whole slide images (WSIs). More recently, Ma el al. [24]
proposed a binary histopathological representation based on
a latent Dirichlet allocation (LDA) model and applied the
retrieval framework to WSIs following a sliding window (SW)
paradigm. It provided a preliminary approach for CBHIR from
WSIs. Nevertheless, three issues are required to tackle when
applied CBHIR to a practical WSI database. First, to achieve
a precise retrieval from WSIs, a group of regions need to be
sampled in overlapping manner throughout the WSIs. When
retrieving, the query ROI needs to be compared with all the
regions in the large database, which causes a high computation.
Second, the size of the query ROI varies greatly according to
the diagnostic requirement. To satisfy the various size of query
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Fig. 1. Flowchart of the proposed framework, where the binary code is displayed in decimal numeral for clearness,

ROIs, multiple retrieval models and the corresponding retrieval
databases need to be established. Third, when the query ROI
has a large size, e.g. 4, 000 × 4, 000 pixels, quantifying the
features in the image into single binary code will weaken the
local patterns of the histopathological image, thus decrease the
precision of retrieval.

In this paper, we propose a novel content-based histopatho-
logical image retrieval framework for a database consisting
of WSIs, in which all the three issues stated above are
simultaneously considered and resolved. Instead of modeling
a WSI in the retrieval database using individual images, we
propose to encode the entire WSI into a matrix of binary
codes. When retrieving, a group of region proposals that have
the similar size of the query ROI are located in the binary
matrices via looking-up a pre-established hashing table and
then are ranked by a designed multi-binary-code-based simi-
larity measurement. Using our framework, the retrieval with
ROIs in different size can be completed using one model and
within one database, which sharply reduces the computation
and storage compared to the present retrieval framework. The
proposed framework was evaluated on a database that contains
epithelial breast tumors. The experiments have certified the ef-

fectiveness of our method. A preliminary version of this work
has been reported [25]. In this paper, we provide more details
of methodology, present further evaluations to demonstrate the
capability of our method, and compare our method with the
state-of-the-art breast image retrieval frameworks.

The remainder of this paper is organized as follows. Sec-
tion II introduces the proposed retrieval framework. The
experiment is presented in Section III. Finally, Section IV
summarizes the present contributions and suggests directions
for future work.

II. METHOD

The flowchart of the proposed framework is illustrated in
Figure 1. A retrieval database is first established by encoding
WSIs into matrices of binary codes. Then, the retrieval can
be achieved through 3 steps: 1) binary encoding, 2) proposal
searching, and 3) ranking & returning. Next, we introduce the
technical details of our retrieval framework.

A. The binariztion of WSIs in the database

The database used in our methods is established with binary
codes matrices of WSIs. As shown in Figure 1A, a WSI is first
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divided into non-overlapping square tiles. Let Tij denotes the
tile in the i-th row and the j-th column in the WSI. Then, the
feature extraction of the tile can be represented as:

xij = f(Tij), (1)

where, xij is a feature vector and f(·) denotes a feature
extraction method. Next, the binary code bij for Tile Tij can
be calculated by

bij = h(xij), (2)

where h(·) = {h1(·), h2(·), . . . , hK(·)} denotes a set of binary
functions. K is the function number, namely the bit number
of the binary code bij .

Considering the practical situation of digital pathology
platforms (e.g. MoticGallery1) where more than 105 digital
WSIs of diagnosed cases are collected but very few of them
are precisely labeled by pathologists, we propose to establish
the framework with unsupervised feature extraction methods
and binary methods.

Repeating the operation of Eq. 1 and Eq. 2 throughout all
the tiles in the WSI, a matrix that consists of binary codes can
be obtained and represented as

B =


b11 b12 · · · b1N
b21 b22 · · · b2N

...
...

. . .
...

bM1 bM2 · · · bMN

 , (3)

where M and N denote the row and column number of tiles in
the WSI. Notice that any submatrix2 generated with contiguous
rows and columns of matrix B can be regarded as a description
of the corresponding region in this WSI. Therefore, the regions
that are eligible to be retrieved from the WSI are determined
by all the feasible submatrices of B.

Let Bl denote the binary matrix of the l-th WSI. Then a
database consists of L WSIs is defined using a set

D = {B1,B2, . . . ,BL}.

Suppose the bit number K = 64. Then a binary code bij
can be stored with 8 bytes in memory. Setting the tile size as
512 × 512 pixels, the storage of the code matrix for a WSI
with 50K × 50K pixels (a medium size under a 20× lens for
breast tumor slide) is less than 80K bytes.

B. Retrieval with binary codes

Based on the database D , a retrieval approach for size-
scalable query ROI is designed in this paper, which can be
divided into three steps (as shown in Figure 1(B)). The query
ROI is first encoded into a set of binary codes. Then, a group
of regions that have the similar size to the query ROI are
proposed from the database D . After ranking the similarities
between the query ROI and these proposed regions, the most
relevant regions as well as their locations in the WSIs are
finally determined and returned to doctors.

The details of the three steps are presented as follows:

1http://med.motic.com/MoticGallery/[accessible 2017-06-12]
2Submatrix is referred specifically to the submatrix generated with contigu-

ous rows and columns of a matrix in this paper.

Fig. 2. An instance of proposal regions determined by a tile, where (a) is the
query image, in which the binary code q23 = 01001001 (73 in DEC), (b)
marks the region proposal defined by C1, and (c) shows the region proposals
defined by C2.

1) Binary Encoding: The binarization of a query ROI is
similar to a WSI of the database. The ROI is first divided into
square tiles that have the same size of those in the database.
Then, these tiles are encoded into a binary matrix Q using Eq.
1 and 2. In practical applications, the query ROI is cropped
in terms of containing as much as tiles for encoding, since
regions that can be retrieved from D are mosaicked with tiles.
Then, the retrieval for size-scalable query image is designed
based on the binary codes of these tiles.

2) Proposal Searching: To refine the searching scope and
reduce the computation in similarity measuring, a set of
regions are previously proposed from all the feasible returned
regions. Intuitively, the scale of the returned regions should
have the similar size to the query one, thereby the returned
regions are restricted to submatrices that have the same size
with Q. Nevertheless, the number of feasible submatrices is
even so large that it is obviously unreasonable to consider all
the size-feasible submatrices in D , especially for a large-scale
database.

Notice the property of binary encoding that samples sharing
an equal binary code should be more similar than those with
different codes. Basing on this property, we propose to locate
tiles that share the same binary code with tiles of the query
ROI in the database. Then, the submatrices including these
tiles are extracted from D as the region proposals, as illustrated
in Figure 1B(2). This process can be accomplished very
efficiently via table lookup operation with a pre-established
hashing table. Let sub(Bl) denote the collection that contains
all the submatrices included in Bl. Then, two types of region
proposals are defined by collections:

C1 : P ={P|∃qmn ∈ Q,∃pmn ∈ P,P ∈ sub(Bl),

Bl ∈ D , s.t.qmn = pmn},
(4)

C2 : P ={P|∃qmn ∈ Q,∃pm′n′ ∈ P,P ∈ sub(Bl),

Bl ∈ D , s.t.qmn = pm′n′},
(5)

where P denotes a submatrix that has the same size with Q,
pmn and qmn denote the binary code in the m-th row and the
n-th column of matrix P and Q, respectively. As illustrated
in Figure 2, C1 is a tile-location-associated scheme while C2

is a densely sampling scheme for the selection of proposals.
Apparently, the scale of P is positively correlated with the
scale of D . Besides, it is negatively correlated with K (the bin
number of the binary code), since the tiles will be described
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Fig. 3. An instance for the three definitions of distance in hamming space,
where pc is a virtual center to describe the average distance between qmn

and all the elements in P.

more discriminatively as the binary codes become longer and
the tiles that sharing the same code will reduce.

3) Ranking & returning: The final retrieval results are
selected from P by ranking the similarities between the query
code matrix Q and the proposals in P . For the query ROI and
the proposals are represented by multiple binary codes (MBC),
a simple Hamming distance cannot measure the similarities
among them. Therefore, MBC-based distances are defined in
this paper. Considering a certain binary code qmn in the query
matrix Q, the distance from qmn to a proposal matrix P is
defined in Hamming space according to three basic principles:
the average, nearest, and farthest distance. As illustrated in
Figure 3, the ”Nearest” and ”Farthest” distance from qmn to
P are defined as the distance between qmn and the nearest and
farthest elements in P, respectively. And the mean distance
between qmn and all the elements of P is defined as the
”Average” distance. Based on the definitions, three types of
distances from matrix Q to P are defined:

DAve(Q,P) =
1

b

∑
qmn∈Q

(
1

b

∑
pij∈P

dh(qmn, pij)), (6)

DNear(Q,P) =
1

b

∑
qmn∈Q

min
pij∈P

dh(qmn, pij), (7)

DFar(Q,P) =
1

b

∑
qmn∈Q

max
pij∈P

dh(qmn, pij), (8)

where b denotes the number of binary codes in matrix P
and Q (i.e. the number of tiles included in the query ROI),
and dh(p, q) represents the hamming distance between the
binary code p and q, namely the number of different bins
in comparison of p and q. As defined, the more similar Q
and P , the closer the three distances should be. These three
distances perform differently when they are used for similarity
measuring. Eq. 6 describes a generally similarity between the
tiles in the query ROI and those in a proposed region. While
Eq. 7 is defined to character the most similar tile in P to
each tile in Q, which encourages the model to return regions
containing the most similar local appearance to the query ROI.
In contrast, Eq. 8 is sensitive to the most dissimilar tile in P to

Fig. 4. Instances of complete annotation, where all the regions of epithelial
tumors in a WSI are annotated and displayed in red, non-epithelial/normal
regions are displayed in green, and adipose tissue and background are
displayed in black .

that in Q, which impels the model to return regions that have
less distinct local appearance with the query ROI. Notice that
the distance dNear(Q,P) ( dFar(Q,P) ) is not equivalent
to dNear(P,Q) ( dFar(P,Q) ). To describe an interactively
similar relationship between P and Q, two further distances
are defined:

Dinter−Near(Q,P) = dNear(Q,P) + dNear(P,Q), (9)

Dinter−Far(Q,P) = dFar(Q,P) + dFar(P,Q). (10)

Choosing one of the five distances as the similarity measure-
ment, the proposed regions indicated by the code matrices
in P are ranked in terms of similarity. The lower the value
obtained by Eq. 6-10, the more similar the two regions.
Finally, the top-similar regions with their locations in the
corresponding WSIs are returned as the retrieval result. The
effectiveness of the five designed distances are discussed in
the experiment section.

III. EXPERIMENT

A. Experimental Data

The experimental images used in this research are supplied
by Motic3 (Motic database). There are 145 HE-stained whole
slide images (WSIs) including epithelial breast tumors under
20x magnification (the spatial resolution is 1.2 µm/pixel). The
145 WSIs are annotated by the pathologists from the air force
general hospital of China, of which 50 WSIs are completely
annotated and the other 95 WSIs are locally annotated. These
annotations are labeled as 15 sub-categories of epithelial breast
tumors according to the world health organization (WHO)
standard [1]. Figure 4 gives 4 instances of complete annotation,
where the regions of epithelial breast tumors are illustrated in
red, regions of other tissue are illustrated in green, and the
adipose tissue and the background regions are displayed in
black.

3Motic (Xiamen) Medical Diagnostic Systems Co. Ltd., Xiamen 361101,
China
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(a) Retrieval performance for different number of
binary bits @s = 2048.
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(b) Retrieval performance for different size of tile
@s = 2048.
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(c) Retrieval performance for different size of the
query ROI @K = 32.
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(d) Precision-Recall curves for different hashing
methods @s = 2048.
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(e) Retrieval performance for different different
similarity measurement.
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(f) Precision-Recall curves for different similarity
measurement @s = 2048.

Fig. 5. Retrieval performance of the multi-binary-code-based similarity measurement on database that consists of individual images.

B. Experimental setting

We first conducted experiment to validate the multi-binary-
code-based similarity measurement using individual images
and then conducted experiments to evaluate the effectiveness
of the proposal selection approach on WSIs database. Finally,
four state-of-the-art retrieval frameworks were compared. In
the experiment, the bag of features (BoF) based on SIFT
descriptors are used to represent histopathological images, of
which the effectiveness for CBHIR is certified in [14], [21]. To
evaluate the universality of our framework, 5 unsupervised bi-
narization methods are validated. They are Locality-Sensitive
Hashing (LSH) [26], thresholded PCA (tPCA)[27], Iterative
Quantization (ITQ) [28], binary factor analysis (BFA) [29]
and Binary Autoencoders (BA) [29].

In application of CBHIR, the retrieved regions that include
the same sub-category of the query ROI are desired by doctors.
Therefore, in the experiment, the returned images and regions
including the same type of epithelial tumor with the query ROI
are regarded as the correct retrieval results. And for query
ROIs of non-tumor/normal tissues, the results containing no
epithelial tumor area are regarded as correct. The mean average
precision (MAP) of the top 20 returned images for all the
testing images and the precision-recall (PR) curve are used
as the assessment metrics. All the methods are implemented
using MATLAB 2013a on a PC with 12 cores of 2.10 GHz.

C. Effectiveness of the proposed similarity measurement

Our framework is a size-scalable image retrieval method.
The regions of interest (ROIs) in different size are sampled to
evaluate the retrieval performance of the proposed similarity
measurement. Specifically, the size of ROIs is ranged from
512 × 512 to 4096 × 4096 pixels with an image side step of
512 pixel. For each size, 6600 images are randomly sampled
from the annotated regions of the 95 locally annotated WSIs
for evaluation. The retrieval performance of each query size is
validated independently through a 5-fold cross-validation [30],
in which the one fifth images of each fold are used as the
query images and the others are regarded as the database. To
present the advantage of our method for large query images,
the performance of retrieval using single binary-code (used
in [24]) is also evaluated. For clearness, the results of the
proposed MBC-based methods are prefixed by ’MBC-’ and
the results using the single binary code (SBC) are prefixed by
’SBC-’.

1) Overall performance: Figure 5 presents the retrieval
performance of different binarization methods. It can be seen
that the retrieval precisions using MBC-based methods are
generally greater than those measured using SBC-methods.
SBC-methods encoded the entire image as one binary code,
which weakened the local information of the histopathological
image. While, MBC-methods divided an image into tiles and
represented the image using multiple binary codes, by which
more details of the histopathological images are preserved.
Therefore, the MBC-methods achieved a better performance.
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2) The bits of binary code K: For hash-based retrieval
framework, the bit number of the binary code K is one of
the most important parameter, which directly influences the
accuracy of retrieval and the storage space of the database.
An efficient retrieval framework shall utilize as few as bits of
code to maintain a high retrieval accuracy. Setting the ROI
size s = 2048 and DNear as the similarity measurement, the
sensitivity of K is evaluated. Figure 5(a) presents the MAPs
obtained under different K for the 10 considered models. In
general, the retrieval precision is positively correlated with K.
And the performance of MBC-based methods is more robust
to K than SBC-based methods, since the MAPs of the MBC-
based methods raise to stable values much faster than the SBC-
based methods as K enlarges. Specifically for MBC-tPCA
method, K = 32 is enough when applied to this database.

3) The size of tile t: Another important parameter for
MBC-based similarity measurement is the side length of tile
(t). Figure 5(b) gives the retrieval performance with different
t. It is noting that the local optimal points (marked by ”+” on
the figure) are appeared when the ROI size s is divisible by
t, and the accuracy declined when s was indivisible by t. The
reason is that the amount of information in the query ROI is
reduced by the cropping operation when s is indivisible by t. In
the local optimal points, t = 128, 256, 512 achieves relatively
equivalent performance for tPCA method. But, more tiles will
cause more computation in the proposed measurements (Eq.6-
9). Therefore, t is finally set as 512.

4) The binarization methods: As presented in Figure 5(c,d),
the MBC-tPCA achieved the best performance. The binariza-
tion model tPCA is designed based on the principle component
analysis (PCA), which is a parameter-free model. The perfor-
mance of tPCA is only influenced by the bits of binary code
K. In the evaluated binarization models, BA also achieved
competitive performance in this experiment. Especially, BA
obtained the highest retrieval accuracy in the five SBC-based
methods. However, the modeling of BA follows an alternating
optimization over two steps [29] and several parameters in
BA need to be adjusted for optimal performance, which is
complicated. For consideration of complexity and robustness,
tPCA is finally determined as the hashing model of the
proposed framework.

5) Performance for different size of query ROIs: Setting
K = 32 and t = 512, the retrieval performance of different
sizes of query images are illustrated in Figure 5(c). Obviously,
using MBC-methods, the performance of retrieval obtained a
great improvement under each query size (except the size of
512×512, for the ROIs containing only one tile that the MBC-
based methods are equivalent to the SBC-based methods). In
addition, the advantage of the MBC-based methods increases
as s growing. It is because that a large query image contains
more local information than the small one. Using MBC-
based approaches to describe the large image maintains more
details about tumors, thus performs better than the SBC-based
methods.

6) Performance for different returned numbers: By adjust-
ing the number of the returned images with a step of 10, a
precision-recall (PR) curve can be obtained. The PR curve
corresponding to K = 32 and s = 2048 is drawn in Figure

TABLE I
RETRIEVAL PERFORMANCE ON WSI DATABASE @K = 48.

Image size s 1024 2048 3072 4096

MAP
C1 0.880 0.921 0.925 0.937
C2 0.959 0.964 0.964 0.961

TABLE II
AVERAGE NUMBER OF REGION PROPOSALS FOR WSIS USING DIFFERENT

PROPOSAL SELECTION APPROACHES.

Image size s 1024 2048 3072 4096

Tile number t 4 16 36 64

#Proposal
SW[24] 480K 461K 441K 425K
C1 15.3 23.2 46.2 58.4
C2 61.2 242.2 1663.3 3736.2

5 (d), which shows the general advantage of the proposed
MBC-CBIR framework. Specifically, the difference between
MBC-tPCA and SBC-tPCA is remarkable.

7) Performance for different similarity measurements: For
the five similarity measurements defined in section II-B3, the
experimental results are illustrated in Figure 5(e,f), where
the binarization method is chosen as tPCA. Overall, the
Nearest-distance achieved the best performance. In the five
measurements, only the two distances designed following the
nearest principle achieved better performance than the SBC-
based method for all the sizes of testing images. And, the
other distances did not perform well. More seriously, the
MAPs for distances defined by the farthest principle decreased
when the query ROI enlarged. Referring to the definition,
the three distances are designed to character more about
global similarity, for which the local patterns of the image are
weakened, especially for large ROIs. While, the Nearest and
inter-Nearest distances pay more attention to the similarities
in local patterns, which is more significant for diagnosis.
Therefore, the two measurements maintain a high retrieval
precision for large query ROIs. Consequently, the Nearest and
inter-Nearest distances are more appropriate for the proposed
CBHIR framework.

D. Effectiveness of the proposal selection approach

When applying MBC-based retrieval to WSIs, the proposal
selection approach introduced in section II-B2 is required.
Choosing tPCA as the binarization method and Nearest-
distance (Eq. 7) as the similarity measurement, we conducted
experiments to evaluate the effectiveness of the proposal
selection approaches on WSI database. The 50 completely
annotated WSIs were regarded as the database. And for each
testing size, the 6600 images sampled from the annotated
regions of the locally annotated WSIs were used as the query
ROIs. Similar to the evaluation of individual images, the MAP
for top 20 returned regions are used as metric.

1) Overall Performance: Table I reports the retrieval results
using the two region proposal methods for different size
of query images. Overall, the proposed framework achieves
considerable retrieval precisions. Specifically, using C2-type
(Eq.5) region proposals, the MAP is over 95% for the four
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X=0.389
Y=0.963

(a) Image size s=3072

X=0.250
Y=0.960

(b) Image size s=4096

Fig. 6. Retrieval performance using different percentage of region proposals
for large query ROIs.

query sizes, which are better than C1-type region proposals.
Notice that dense regions around a certain tile in WSIs were
proposed by C2, which would bring redundancy to the retrieval
result. Therefore, only the most similar region around a tile
was preserved and the redundant results around the same tile
were excluded in the ranking procedure.

2) Leveraging the two region proposing methods: The num-
ber of regions using C1 and C2 proposal selection schemes
are reported in Table II, in which the estimation for the
sliding window (SW) paradigm used in [24] are also given for
comparison. It shows that the two region proposing methods
sharply reduced the scope of searching. In the experiment, C2

achieved a better performance but yielded a large amount of
region proposals for large query ROIs. To find a balance of
the two methods, we reduced the C2-type region proposals for
3072× 3072 and 4096× 4096 query ROIs through randomly
sampling. Figure 6 presents the MAPs that vary with the
percentage of region proposals used in retrieval. It can be seen
that the MAPs are over 96.0% when the percentage of proposal
increases to 38% and 25% for 3072× 3072 and 4096× 4096
query images, respectively. And using more region proposals,
the MAP increased little. Therefore, 38% and 25% proposals
are enough for retrieval with 3072 × 3072 and 4096 × 4096
query ROIs.

3) Effect of the binary bits: The performance of proposal
searching is also influenced by K. Table III presents retrieval
performance for different K. When K is too small (e.g.
K = 12), the tiles in WSI cannot be discriminatively rep-
resented and too many tiles are assigned to the same binary
code, which will result in a high computation in the ranking
& returning step. When K > 48, both the proposal number
and MAP change little, which indicates that the binarizaition
encoding is already redundant for the representation of the 50
WSIs. Considering both the precision and time consumption
of retrieval, K = 48 are the most appropriate for the proposed
framework. The time cost for the retrieval stage is also reported
in Figure III. The average feature extracting times for image
size s =1024, 2048, 3072, and 4096 are 0.11, 0.36, 0.78, and
1.30, respectively. Therefore, a retrieval for a query ROI with
a size of under 4096 × 4096 pixels can be completed within
1.5 second. Generally, choosing an appropriate number of
binary bits according to the amount of WSIs in the dataset can
effectively control the computational efficiency and retrieval
performance, achiving a considerable retrieval precision and a
relatively short time for large-scale WSI database.

E. Visual results of the proposed model

Figure 7 visualizes two instances of retrieval for the same
ROI in different scale and Figure 8 illustrates the results
retrieved by different similarity measurements for the two
query ROIs, which shows that the retrieval performance is
consistent with the numerical assessment. In Figure 8, the
top-ranked regions returned by the Nearest distance are the
most relevant to the query ROI and the regions returned
by the inter-Nearest-distance relatively cover more diagnosed
cases. Therefore, we recommend using the two similarity
measurements in practical applications.

F. Comparison with other retrieval frameworks

To thoughtfully evaluate the proposed retrieval method, four
state-of-the-art retrieval frameworks proposed for histopatho-
logical images are compared. They are:
• BoF-Cos (Caicedo et al. [14]): The low-level features are

quantified by BoF model to represent histopathological
images and the similarity between images are measured
by cosine distance.

• LDA-Cos (Ma et al. [24]): High-level semantic features
generated by latent-Dirichlet-allocation (LDA-based) [31]
are used to describe images and the similarity between
images are measured by cosine distance.

• SBC-KSH (Zhang et al. [21]): The SIFT-BoF representa-
tions are converted to binary codes using KSH model [23]
and the similarities are measured by hamming distance.

• LDA-SH (Ma et al. [32]): The low-level features are
converted to binary codes by a LDA-based supervised
hashing model and the similarities are measured by
hamming distance.

In the four frameworks, BoF-Cos and LDA-Cos are established
based on unsupervised algorithms. They are also designed for
retrieval task that lacks labeled histopathological iamges. In
contrast, SBC-KSH and LDA-SH are based on supervised
hashing models, which are designed for retrieval situation
that plenty of labeled images are available for training. To
evaluate the performance of the proposed framework in the
latter situation, we also implemented a MBC-KSH framework
by replacing the hashing model tPCA with KSH. the results
of MBC-KSH are also discussed in this section.

For fair comparison, the low-level features in the four
compared frameworks are set the same SIFT descriptors.
The parameters in each model are optimized in the training
set and results are obtained in the testing set with optimal
parameters. The MAP of the top 20 returned ROIs is used to
evaluate the performance of retrieval. In addition, the lesion
of the query ROI can be classified following the K-nearest
neighbor paradigm when the ROIs in the retrieval database
are labeled. In this experiment, the lesion of each testing
sample is determined from the 20-nearest neighbors (the top
20 returned ROIs) and the mean classification accuracy of
the testing samples is reported. Moreover, the classification
performance of traditional classifiers, including linear SVM,
KNN based on Euclidean distance and Softmax classifier, are
provided as the classification benchmark.
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TABLE III
AVERAGE PROPOSAL NUMBER, MAP AND AVERAGE TIME CONSUMPTION AS A FUNCTION OF BIT NUMBER K .

K
s=1024 s=2048 s=3072 s=4096

#Proposal MAP Time(s) #Proposal MAP Time(s) #Proposal MAP Time(s) #Proposal MAP Time(s)

16 1254 0.823 0.022 4192 0.946 0.073 7704 0.952 0.324 11466 0.954 0.819
24 393 0.872 0.008 1346 0.944 0.029 2493 0.944 0.115 3874 0.952 0.289
32 100 0.914 0.017 560 0.942 0.028 872 0.941 0.042 973 0.948 0.101
40 64 0.941 0.003 381 0.954 0.012 667 0.956 0.047 952 0.959 0.101
48 62 0.959 0.003 371 0.964 0.011 646 0.963 0.046 934 0.960 0.106
56 62 0.960 0.003 371 0.965 0.012 646 0.963 0.051 930 0.960 0.138
64 62 0.960 0.003 371 0.966 0.011 646 0.963 0.040 930 0.960 0.125

Fig. 7. Instances of retrieval for scenes in different size, where (a) is the result for a scene of invasive carcinoma of no special type (NST), and (b) is the
result for normal tissue. The first column of each instance shows the query ROIs and the other columns are results. The correct and incorrect retrieval results
are framed in green and red, respectively.

Fig. 8. Retrieval for the two instances in Figure 7 by different similarity measurements for 2048× 2048 query ROIs.

1) Results on Motic database: The division of training and
testing set is the same as that in section III-D. Since the four
comparative methods are all designed for database that consists
of ROIs, we converted the retrieval database into four sub-
databases of individual ROIs through randomly sampling the
WSIs. The side length of ROIs in the four sub-databases is
1024, 2048, 3072, and 4096, with the number of ROIs 10290,

9734, 8784, and 8194, respectively. The results for the four
sub-databases are given in Table IV.

Overall, the proposed method MBC-tPCA achieved the
state-of-the-art retrieval performance in the four unsupervised
methods for ROIs in 2048×2048, 3072×3072 and 4096×4096
pixels. And for ROIs in 1024 × 1024 pixels, LDA-Cos per-
formed the best, the MAP of which is 1% higher to MBC-
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TABLE IV
RETRIEVAL AND CLASSIFICATION PERFORMANCE OF THE COMPARED

METHODS ON THE MOTIC DATABASE.

Unsupervised s = 1024 s = 2048 s = 3072 s = 4096
Methods MAP / MCA MAP / MCA MAP / MCA MAP / MCA
BoF-Cos[14] 0.67 / 0.81 0.71 / 0.83 0.74 / 0.86 0.74 / 0.86
LDA-Cos[24] 0.72 / 0.84 0.78 / 0.88 0.82 / 0.91 0.83 / 0.91
SBC-tPCA[27] 0.66 / 0.69 0.71 / 0.72 0.74 / 0.77 0.76 / 0.73
MBC-tPCA 0.71 / 0.76 0.80 / 0.86 0.86 / 0.91 0.88 / 0.92
Supervised s = 1024 s = 2048 s = 3072 s = 4096
Methods MAP / MCA MAP / MCA MAP / MCA MAP / MCA
SVM - / 0.75 - / 0.77 - / 0.78 - / 0.80
KNN - / 0.81 - / 0.83 - / 0.86 - / 0.86
Softmax - / 0.81 - / 0.84 - / 0.88 - / 0.89
SBC-KSH[21] 0.75 / 0.76 0.85 / 0.85 0.88 / 0.88 0.90 / 0.89
LDA-SH[32] 0.81 / 0.82 0.89 / 0.89 0.91 / 0.92 0.91 / 0.92
MBC-KSH 0.78 / 0.78 0.88 / 0.89 0.93 / 0.94 0.94 / 0.95

TABLE V
RETRIEVAL AND CLASSIFICATION PERFORMANCE OF THE COMPARED

METHODS ON THE BREAKHIS DATABASE.

Unsupervised M. = 40× M. = 100× M. = 200× M. = 400×
Methods MAP / MCA MAP / MCA MAP / MCA MAP / MCA
BoF-Cos[14] 0.37 / 0.45 0.33 / 0.42 0.30 / 0.38 0.28 / 0.35
LDA-Cos[24] 0.39 / 0.43 0.36 / 0.40 0.33 / 0.40 0.31 / 0.38
SBC-tPCA[27] 0.34 / 0.43 0.31 / 0.40 0.29 / 0.39 0.25 / 0.34
MBC-tPCA 0.41 / 0.47 0.35 / 0.40 0.33 / 0.40 0.27 / 0.37

Supervised M. = 40× M. = 100× M. = 200× M. = 400×
Methods MAP / MCA MAP / MCA MAP / MCA MAP / MCA
SVM - / 0.39 - / 0.31 - / 0.28 - / 0.21
KNN - / 0.42 - / 0.41 - / 0.37 - / 0.36
Softmax - / 0.40 - / 0.31 - / 0.28 - / 0.21
SBC-KSH[21] 0.41 / 0.41 0.33 / 0.30 0.30 / 0.25 0.27 / 0.22
LDA-SH[32] 0.40 / 0.39 0.33 / 0.31 0.31 / 0.25 0.27 / 0.24
MBC-KSH 0.38 / 0.43 0.32 / 0.37 0.29 / 0.36 0.28 / 0.34

tPCA. The superiority of LDA-Cos derives from the high-
level semantics generated by LDA. And, the advantage of
MBC-based representations becomes larger when the size
of ROI increases. Remarkably, the MAP of MBC-tPCA is
5% better than LDA-Cos when s = 4096. That is because
larger ROIs contain more meaningful objects. Using local
representations can better characters these objects than using
a global representation, and thus obtains a higher accuracy in
retrieval.

Utilizing the supervised hashing method, the proposed
MBC-KSH achieved a better performance than the unsuper-
vised model MBC-tPCA. Compared MBC-KSH with SBC-
KSH, the retrieval accuracy improves more than 3%. These
results have demonstrated that the proposed MBC-based simi-
larity measurement is also effective for the supervised hashing
model when the labels of images are accessible.

In addition, the classification performance of the proposed
retrieval framework is also competitive in the compared meth-
ods. Especially for s = 2048, 3072, 4096, MBC-KSH achieves
the best classification accuracy over all the compared methods.
It indicates that the proposed framework is applicable to breast
lesion classification.

2) Results on BreaKHis database: The comparison is also
conducted on the public database BreaKHis [33], which con-
tains eight classes of breast tumor images with four magnifi-
cations. Specifically, there are 1995, 2981, 2913, and 1820
images in magnification of 40×, 100×, 200× and 400×.
The same experiment as on the Motic database is conducted
on this database, where the division of training and testing
data is the same with that in research [33]. The results of

sub-lesion retrieval and classification for ROIs with the four
magnifications are given in Table V.

The MBC-tPCA method performs 2%-7% better than SBC-
tPCA in the retrieval task. Again, it proves the effectiveness
of the multi-bianry-code-based similarity measurement. Notice
that this superiority is more evident in lower magnification.
This is because the images in BreakHis database are all in
size of 700×460 pixels so that images in lower magnification
contains more information for the lesion. In low magnifica-
tions, dividing the image into tiles to encode preserved more
details of the lesion, and thereby achieved better retrieval
performance. The conclusion is consistent with that reached
in the Motic Database.

Utilizing the supervised model, MBC-KSH achieved rather
worse performance than MBC-tPCA in the retrieval and classi-
fication task. One of the reason is that the tile-level labels used
to train KSH are imprecise. Specifically, the tile-level labels
inherited from the image-level labels, since only image-level
labels are accessible in BreakHis database. In this situation,
the tumor-irrelevant tiles in the image were also labeled as the
tumor, which confused the KSH model in the training stage.

IV. CONCLUSION

In this paper, we proposed a novel content-based image
retrieval framework for database that consists of histopatho-
logical whole slide images. The effectiveness of the framework
has been certified with experiments on two breast tumor
databases. The contribution of this work mainly includes the
following two aspects. The one is that we have proposed
a complete size-scalable CBIR framework for large-scale
database that consists of WSIs. Using the binarization method
and hashing technique, the query process can be efficiently
completed. Another is that we have proposed a set of similarity
measurement for the images that represented in multiple binary
codes, in which the Nearest and inter-Nearest distances are
certified effective for histopathological image retrieval. Further
work will concentrate on the retrieval with irregular ROIs
using the proposed similarity measurements.
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