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Abstract— In the domain of histopathology analysis,
existing representation learning methods for biomarkers
prediction from whole slide images (WSI) face challenges
due to the complexity of tissue subtypes and label noise
problems. This paper proposed a novel partial-label con-
trastive representation learning approach to enhance the
discrimination of histopathology image representations for
fine-grained biomarkers prediction. We designed a partial-
label contrastive clustering (PLCC) module for partial-label
disambiguation and a dynamic clustering algorithm to
sample the most representative features of each category
to the clustering queue during the contrastive learning
process. We conducted comprehensive experiments on
three gene mutation prediction datasets, including USTC-
EGFR, BRCA-HER2, and TCGA-EGFR. The results show
that our method outperforms 9 existing methods in terms
of Accuracy, AUC, and F1 Score. Specifically, our method
achieved an AUC of 0.950 in EGFR mutation subtyping
of TCGA-EGFR and an AUC of 0.853 in HER2 0/1+/2+/3+
grading of BRCA-HER2, which demonstrates its superior-
ity in fine-grained biomarkers prediction from histopathol-
ogy whole slide images. The source code is available at
https://github.com/WkEEn/PLCC.

Index Terms— WSI analysis, Gene mutation prediction,
Representation learning, Partial-label learning
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I. INTRODUCTION

THe incidence of cancer is increasing year by year in
various countries [1], [2]. Diagnosis based on histopatho-

logical images remains the gold standard for cancer diagnosis
[3]. With the development of whole slide imaging and digital
pathology, computer-aided cancer diagnosis based on whole
slide image (WSI) analysis becomes a viable solution, espe-
cially for biomarkers prediction, which is often challenging to
detect on the histopathology images [4], [5]. It is promising to
improve the diagnostic efficiency of pathologists and reduce
misdiagnosis [6]–[8].

The gigapixel characteristic of WSIs determines the current
WSI analysis framework highly depends on local feature
extraction and representation learning. It has become essential
for WSI analysis [9]–[11]. However, learning effective rep-
resentations for different lesion tissues is a challenging task
because the structure and morphology of WSIs are much more
complex than natural scene images. Previous WSI analysis
frameworks generally utilized the supervised representation
learning paradigm, which has been verified effective in var-
ious downstream tasks. However, supervised learning highly
depends on the quantity and quality of manual annotations
while the manual annotation of gigapixel WSIs is labor-
intensive and error-prone. The workload of pathological image
annotations has become the major bottleneck of WSI analysis
development.

To address the shortage of pathological annotations, sev-
eral studies attempted to reduce the dependence on manual
annotation [12], [13]. Typically, self-supervised learning is
a bold attempt to completely abandon manual annotation,
which uses the image features themselves to guide the network
training. Recent successes of contrastive learning in natural
images vision tasks show the great priority in the field of
representations learning [14], [15], and thereby have been in-
troduced for local representation extraction of WSIs [16], [17].
Correspondingly, weakly supervised learning is widely studied
for the WSI level analysis, which neither relies on fine-gained
manual annotations by pathologists nor completely discards
any annotations. These methods make use of weakly super-
vised semantic information, such as WSI-level or patient-level
labels. Typically, an increasing number of studies formulate
the WSI analysis task as a multiple instance learning (MIL)
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problem, which can identify the most meaningful instances
(image patches) for the recognition of a WSI.

One of the most popular applications in the field involves
the prediction of biomarkers from histopathology WSIs. The
status of biomarkers is defined based on the testing results
of patients, including immunohistochemistry, fluorescence in
situ hybridization, gene sequencing, etc. These states are
invisible to the pathologists on hematoxylin-eosin staining
images, making it challenging to annotate fine-grained mutated
regions. These tasks with only patient-level labels accessible
are naturally weakly supervised problems. Notably, Pao et
al. [18] developed some deep learning algorithms to assess
EGFR status using a real-world advanced lung adenocarci-
noma cohort of 2099 patients with histopathology images.
Farahmand et al. [19] proposed a CNN-based framework to
predict HER2 status and achieved an area under the curve
(AUC) of 0.810 on an independent TCGA test set. Schrammen
et al. [20] developed a weakly supervised approach for the
detection of BRAF mutations using WSIs. The prediction
of microsatellite instability (MSI) in colorectal cancer (CRC)
stands out as a particularly well-explored area [7], [21]–[23].
Furthermore, Niehues et al. [24] evaluated the efficacy of deep
learning-based predictions for MSI, BRAF, KRAS, NRAS,
and PIK3CA biomarker statuses from histopathological slides.
In addition, Shamai et al. [25] introduced a system that
achieved high predictive accuracy for PD-L1 status in breast
cancer, with an impressive AUC ranging between 0.910 and
0.930. Other researchers have concentrated on assessing tumor
mutational burden (TMB) in lung cancer [26]–[28].

However, it remains a significant problem in fine-grained
biomarker prediction using WSI-level labels that current
methodologies tend to assume tissue within the WSI can
only be classified into two categories, e.g. biomarker-positive
or biomarker-negative. The labels to be predicted are often
present in a hierarchical structure and exhibit overlapping
characteristics. This simplification leads to the generation of
conflicting pseudo-labels within the typical binary-categorized,
weakly supervised MIL frameworks, introducing noise into
the modeling process of the weakly supervised WSI analysis
framework. Consequently, most existing MIL methods suffer
from this noisy supervision, rendering them less effective
for fine-grained WSI classification tasks, particularly in the
context of biomarker prediction.

In this paper, we proposed a novel weakly supervised
representation learning framework for fine-grained WSI classi-
fication. We rethink the local representation learning problem
under the weakly supervised paradigm and formulate it as
the partial-label learning problem. Different from supervised
learning or MIL, the proposed framework assigns a candidate
label set for each patch extracted from a WSI based on the
coexistence dependencies of the diagnosis prior. During the
representation learning, the real label of each patch is iden-
tified from the candidate label set using the designed partial-
label disambiguation module and then used to improve the
ability of the representation to distinguish subtle but significant
pathology patterns. The proposed framework was evaluated
with WSI classification on 3 large-scale WSI datasets defined
by multiple fine-grained histopathology identification tasks.

The results have shown the proposed method achieved stably
significant improvements than the other representation learning
methods with different benchmark WSI classification models.

The contribution of this paper can be summarized as fol-
lows:
• We conducted an in-depth study on the label noise prob-

lem faced by representation learning in weakly supervised
histopathological WSI classification tasks. We proposed a
framework based on a partial-label learning paradigm and
developed a contrastive representation learning frame-
work with partial-label disambiguation, as shown in Fig.
1. This framework significantly outperforms existing rep-
resentation learning methods when applied to the fine-
grained classification task of biomarker prediction in
WSIs. To our knowledge, this is the first research to
address the label noise problem introducing partial-label
learning in weakly supervised WSI multi-classification
tasks at the representation learning level.

• We proposed a partial-label contrastive clustering (PLCC)
module that can online achieve partial-label disambigua-
tion during the contrastive learning process. This enables
the use of more accurate pseudo-labels for high-quality
representation learning. Furthermore, we proposed a dy-
namic clustering algorithm that continuously samples the
most representative features of each category to the clus-
tering queue during the contrastive learning process. This
enhances the performance of partial-label disambiguation
and finally ensures the model’s stable convergence.

• We conducted experiments on three WSI datasets for
biomarker predictions and compared our approach with
nine methods. Comprehensive experiments have verified
the superiority of our method.

II. RELATED WORKS
A. Contrastive Representation Learning

The framework we proposed is built on contrastive repre-
sentation learning. Research has consistently shown that rep-
resentations developed through contrastive learning methods
surpass those from supervised learning in effectiveness and
robustness for histopathology WSI analysis.

The application of contrastive learning to pathological im-
age analysis is gaining momentum. Huang et al. [29] en-
hanced survival prediction with representations pre-trained on
a pathological dataset via SimCLR, which avoided the use of
representations transferred from ImageNet pre-trained models.
Wang et al. [30] introduced TransPath, which combines BYOL
and Transformer to address the issue of variable input sizes
in pathological images, thereby improving classification per-
formance. Ciga et al. [31] found that features pre-trained on
a large-scale pathological dataset with SimCLR outperformed
those pre-trained on ImageNet in several downstream tasks.

Additionally, some studies have revisited the suitability of
contrastive learning methods for pathology image analysis
to enhance their adaptability. Liu et al. [32] redefined the
contrastive pair sampling strategy by forming positive pairs
from adjacent tissue regions, thus capturing local spatial
correlations. Yang et al. [33] highlighted the limitations of
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Fig. 1. The overview of our proposed partial-label contrastive learning framework, where (a) is the proposed partial-label disambiguation module,
which aims to mine the true category of samples from the candidate labels, and (b) is the sample filter module, which aims to update the cluster
queues.

traditional data augmentation methods and proposed a novel
augmentation technique, stain vector perturbation, specifically
designed for pathological images.

These studies not only affirm the viability of contrastive
learning methods in computational pathology but also high-
light areas for improvement in the representation learning of
pathological images.

B. MIL-based Weakly Supervised WSI Classification
In weakly supervised learning, the majority of research

adopts a multi-instance learning (MIL) framework. This ap-
proach regards each WSI as a bag, with sampled patches
acting as instances. Some researchers assign the same pseudo-
label to each patch as the WSI and train a feature extraction
network based on these pseudo-labels. This strategy, however,
frequently results in a significant number of false positives.

Campanella et al. [34] introduced a Top-K mechanism to
refine training sample selection. This method ranks tiles by
their likelihood of being positive and focuses learning on the
top-ranked tiles per slide. Following this methodology, Ler-
ousseau et al. [13] suggested that tiles with a low probability
of positivity are likely negative, and refined the training dataset
during the learning process.

Kalra et al. [35] enhanced tissue representation robustness
by using hierarchically arranged target labels for WSIs to fine-
tune the feature extractor. Reisenbchler et al. [36] identified
the K nearest neighbors for each instance and used these
neighbors to compute self-attention scores, which effectively
models the patch relationships. Ding et al. [37] improved
histopathology image representation learning with MIL by
integrating multi-scale information.

The development of Transformer has brought a novel solu-
tion and the self-attention mechanism can easily capture the
relevant between instances. TransMIL proposed by Shao et
al. [38] has verified the effectiveness of feature aggregation
by Transformer. Zheng et al. [39] proposed a Transformer
framework based on regional anchors to mine the global
and local features of slides. Wu et al. [40] introduced self-
supervised pre-training into the WSI representation learning.
Zhang et al. [41] proposed a double-tier attention-based MIL
framework to capture the intrinsic slide features.

C. Partial-label learning for pathology image analysis
As cancerous tissue differentiates and invades, tissue types

in a pathological section are complex and varied. Furthermore,
because doctors typically only report the highest level of
pathology, the labels we collect are often incomplete. For
example, in a tissue section of poorly differentiated adeno-
carcinoma, there may be areas of inflammation, highly differ-
entiated tissue, and moderately differentiated tissue. Based on
this, we can design a candidate label set for different sections,
which defines the possible tissue types that may exist in each
section. This candidate label set is often consistent among
sections of the same category, forming a partial-label learning
(PLL) problem.

Label disambiguation is the core of solving the PLL prob-
lem. It involves distinguishing the true label from a set of
candidates, which becomes a challenging task in the presence
of similar pathological patterns. Fan et al. [42] proposed the
disambiguation correction network with graph representation
to address these challenges by utilizing graph-based represen-
tations to enhance the understanding of relationships among
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candidate labels and refine label prediction accuracy. Recent
developments have seen the integration of contrastive learning
into the PLL framework to further improve label disam-
biguation. Contrastive learning can significantly enhance the
disambiguation process, which learns to distinguish between
similar and dissimilar instances. Wang et al. [43] and Xia et
al. [44] have demonstrated how contrastive learning can be
employed for effective label disambiguation in PLL and lead to
more accurate and robust models. These approaches capitalize
on the inherent strengths of contrastive learning to better han-
dle the complexities of partial-label scenarios, particularly in
pathology image analysis where tissue heterogeneity and mor-
phological similarities pose substantial challenges. However,
we have not identified any research that employs contrastive
learning for partial-label disambiguation specifically in the
field of pathology image representation learning.

(a) The relationship of EGFR labels (b) The relationship of HER2 labels

Fig. 2. The hierarchical relationships in the labels for biomarker
prediction tasks, where (a) illustrates the overlapping relationships
among various categories in the EGFR dataset, while (b) displays the
progressive relationships between categories in the HER2 dataset.

III. METHODS

A. Partial-label problem in WSI biomarkers prediction
Biomarkers prediction from WSI inherently exhibits hierar-

chical relationships among labels. To illustrate, we consider
the task of identifying mutations in the epidermal growth
factor receptor (EGFR) and human epidermal growth factor
receptor-2 (HER2) gene from histopathology WSIs. EGFR
is a cell surface receptor activating cell growth and survival
[45]. EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the
primary tools of targeted therapy for non-small cell lung
cancer (NSCLC) of which the efficacy is associated with
EGFR mutation status [46]. Such a dataset might include five
subtypes: tumor-free, EGFR 19del mutation, EGFR L858R
mutation, non-common driver mutations (wild type), and other
driver gene mutations (other types). Here, ”wild type” denotes
cancer tissues lacking EGFR gene mutations. As depicted in
Fig. 2(a), tissues of this category may also appear in WSIs
with EGFR-19del mutations. Therefore, a patch from such a
WSI could belong to the 19del mutation, wild, and tumor-free
categories. We address this as a partial-label issue by creating
a label vector to represent the possible tissue types: [tumor-
free, wild type, 19del mutation, L858R mutation, other types].
For example, patches from 19del mutation slides are assigned
a partial label set Y = [1, 1, 1, 0, 0], indicating that the slides
may also include patches of normal and wild type tissues.
Additionally, HER2 is a transmembrane tyrosine kinase re-
ceptor with a pathological characteristic of promoting tumor

angiogenesis and enhancing tumor invasiveness, including the
IHC score of 0 (Normal), 1+, 2+, and 3+. It is a major classifier
of molecular subtypes and the therapeutic target of breast
cancer with a positive rate of 15%–30% [47]. The grading
of HER2 is determined by the protein expression level in the
immunohistochemical results. The higher the expression level,
the higher the grading of HER2. It is usually compared with a
standard cell line expressing a certain level of HER2 receptor,
so there is no clear line between adjacent grades, which leads
to the possibility that the higher grade class contains the lower
grade class, thus forming a hierarchical structure as shown in
Fig. 2(b).

The critical challenge lies in determining the true label ŷ
from the partial label set Y for each patch and properly utiliz-
ing the corrected label to enhance the efficacy of contrastive
representation learning.

We built an integrated partial-label-based representation
learning framework to tackle these challenges, which is il-
lustrated in Fig. 1. It forms an integrated end-to-end rep-
resentation learning architecture with the designed module
named partial-label contrastive clustering (PLCC). The frame-
work builds on the BYOL network structure. Additionally,
a dynamic representation clustering module is placed at the
end of the target network branch. These additions enable
partial-label correction and weakly supervised representation
learning throughout each step of training. We also introduced
a category-aware cluster updating module, which ensures
continuous updates of clusters during training. The details are
presented in this section.

B. Contrastive representation learning framework

We introduced BYOL as the basic representation learning
structure. It’s a Siamese network consisting of two branches,
namely an online network and a target network. The online
network consists of an encoder Fθ, a projector Gθ and a
predictor Qθ, which are defined by a set of trainable weights
θ. The target branch contains an encoder Fξ and a projector Gξ

that share the same structures of Fθ and Gθ defined by another
set of weights ξ. In addition, both projector and predictor are
multilayer perceptron (MLP) that are composed of two fully
connected layers, a BN layer, and a ReLU layer.

Given a patch x, two different sets of augmentation methods
T and T ′ are applied to obtain the augmented views for the
patch x, which are v = T (x) and v′ = T ′(x). Then, in
the online network, the augmented view v is fed into the
network to get representation sθ = Fθ(v) and the projection
zθ = Gθ(sθ). Correspondingly, in the target network, the
representation sξ = Fξ(v

′) and the projection z′ = Gξ(sξ) are
obtained from v′. Finally, the predictor output pθ = Qθ(zθ) of
the online network and the output z′ of the target network are
normalized to calculate the loss. The loss function is defined
as follows:

Lcon = −⟨Qθ(zθ), z
′⟩ = − QT

θ (zθ) · z′

∥Qθ(zθ)∥2 × ∥z′∥2
, (1)

where ⟨·⟩ denotes the cosine similarity measurement function.
The above loss function is only used to update the online
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network weights θ, and the target network branch is updated
by the exponential moving average (EMA) mechanism with a
hyperparameter τ :

ξ = τξ + (1− τ)θ, τ ∈ [0, 1] (2)

Additionally, we built a supervised learning path at the end
of the online target to utilize the information of partial labels.
Specifically, a fully connected layer FCθ is built to predict
the real label of the patch, and a cross-entropy loss function
is applied to fit this prediction to the clean label determined
by the PLCC module, which can be formulated as

Lcls = ŷ log(FCθ(pθ)). (3)

Finally, the overall optimization objective is

L = λLcon + Lcls, (4)

where λ is a hyper-parameter for weighing the loss functions.

C. Partial-label disambiguation
Partial-label disambiguation is crucial in the proposed

framework, which aims to deduce the true label ŷ from the
partial label set for a sample x. To achieve this, we established
a cluster for each category, denoted as Uk, where k ranges
from 0, 1, . . . , C−1, with C representing the number of slide
categories in the dataset. These clusters are designed to store
the image representations z′ associated with their respective
category.

Considering an image x sampled from a WSI with label
y, the proposed partial-label disambiguation process based on
the category clusters is described as follows.

1) Feed x into the target branch to obtain the representation
z′ through the following modules:

z′ = Gξ(Fξ(v
′)),v′ = T ′(x) (5)

2) Calculate the similarity distribution between the repre-
sentation of x and the representations in the clusters
which can be formulated as

dki = ⟨z′, z′ki⟩, z′ki ∈ Uk (6)

where dki represents the cosine distance between z′ and
the representation of the i-th sample in the k-th category
cluster.

3) Highlight the most similar representations in the clusters.
This is achieved by softmax operation, which can am-
plify the differences in the sample representations stored
in the clusters. The specific formulas are defined as

ski =
exp(dki)∑C−1

m=0

∑N
i=1 dmi

, (7)

where N denotes the size of each cluster.
4) Measure the overall similarity of the sample to each

category by summarizing ski:

sk =
1

N

N∑
i=1

ski.

Then, we represent the similarities between the sample
x and the clusters as S = [s0, s1, . . . , sC−1].

5) Introduce the partial-label a prior. As we have defined
the partial label as a vector, we can achieve it by the
Hadamard product:

Ŝ = S⊙Y(y), (8)

where Y(y) indicates the partial label for the WSI label
y. It can be regarded as a mask that indicates which types
of tissue are possible in the WSI. Then, the Hadamard
product acts as a masking operation to the similarities.

6) Disambiguate to obtain the optimal label, specifically
defined as:

ŷ =


y

∑
k ̸=y

ŝk < γ,

argmax
k ̸=y

ŝk otherwise,
(9)

where ŝk denotes the k-th element of Ŝ and γ is
a threshold for immediately rejecting the patch to be
assigned to other classes that are different from the label
of its WSI.

Here, we discuss the advantages of the partial label hy-
pothesis to the other non-ideal supervision strategies. Fig. 3
shows the label assignment for a hard positive sample under
different strategies, where there are three positive categories
p1, p2 and p3 besides the negative category, and x denotes a
patch sampled from a WSI labeled as p3 but its true tissue
type belongs to the class p2. Fig. 3(a) illustrates the nearest
neighbor strategy. It will assign x the most similar cluster,
which is the most common setting in the semi-supervised
learning framework. In this case, x will be mislabeled as p1.
Fig. 3(b) shows the threshold-based strategy where the hard
sample will be discarded if the nearest distance is larger than a
threshold. Fig. 3(c) is the binary hypothesis, i.e., a patch from
a WSI with label p3 is either labeled p3 or negative, which
is commonly used in the MIL frameworks. In this strategy, x
will be misclassified as p3. In contrast, the proposed partial-
label disambiguation strategy allows the sample to be assigned
to one of the pathologically reasonable tissue types, including
p2, p3, and negative. As shown in Fig. 3(d), x will be correctly
labeled as p2 based on our disambiguation strategy. Therefore,
the proposed method can significantly reduce the label noise
in this type of complex weakly supervised learning scenarios
and thereby deliver more discriminative representations for the
downstream WSI classification tasks.

D. The category-aware cluster updating
Obviously, the effectiveness of the proposed partial label

strategy disambiguation depends on the high quality of the
category clusters Uk. It is challenging to build the clusters
in the complete absence of patch-level annotations. To ensure
Uk is consistently representative of the corresponding class
during the optimization of the network, we propose to update
Uk in each step of training. Specifically, for the k-th cluster,
a set of samples U+

k are recognized from the mini-batch. The
representations in U+

k are pushed to the cluster queue Uk and
simultaneously pop |U+

k | oldest samples from Uk. Let Bk =
{x | y = k} be the set of samples in a mini-batch sampled
from slides of class k. Considering the unbalance of the labels,
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Fig. 3. The four strategies to update hard positive sample labels, where
x is the sample to be updated which is the patch sampled from the slide
of p3 class while belongs to p2 class, (a) signifies updating x to the
most similar cluster, (b) involves introducing a threshold τ to ensure x
is updated only to the top-k clusters, (c) denotes updating x to either
the sampled WSI category or a negative cluster, and (d) represents the
proposed partial-label learning update strategy.

we designed a top β% update strategy for |U+
k |. The principles

are as follows.
• For the cluster corresponding to the negative class, i.e.,

k = 0, U+
k samples a portion (|Bk| × β%) of the sample

representations randomly from Bk.
• For the cluster corresponding to the positive class, i.e.,

k > 0, U+
k takes the representations that are top β%

similar to the cluster from Bk.
The detailed algorithm is summarized in Algorithm 1

By updating in this manner, it is ensured that each cluster is
continuously updated during training and maintains the con-
sistency between the representations stored in each category
queue and the model’s output representations.

E. Utilizing the trained encoder for WSI analysis tasks
Finally, we followed the MIL paradigm for WSI-level tasks

and employed the encoder trained under the PLCC framework
as the patch feature extractor. The extracted features are input
into WSI classification benchmarks for classification. Our pro-
posed method is a contrastive self-supervised representation
learning framework that focuses on the intrinsic features of
pathology images. Therefore, it can be applied to various
specific downstream tasks and is capable of extracting image
representations that are discernible and relevant to specific
tasks.

IV. EXPERIMENTS

A. Experimental Settings
Our experiments were conducted on two in-house WSI

datasets and a public dataset collected from the Cancer

Algorithm 1: The pseudo-code for the cluster updating
algorithm.

Input:
{Uk}k=0,1,...,C−1: The clusters of C categories;
{Bk}k=0,1,...,C−1: The sets of representations in the current
mini-batch for different categories;
β%: The ratio of random sampling.

Output:
{Ûk}k=0,1,...,C−1: The updated clusters;

for k ← 0 to C − 1 do
if k = 0 then

U+
k

= random(Bk, |Bk| × β%);
// Randomly select β% of samples from Bk.

Uk.pop(|U+
k
|);

// Pop |U+
k
| oldest samples from Uk.

Uk.push(U+
k
);

// Push U+
k

into Uk for updating.
else

for z′j ∈ Bk do

skj = 1
|Uk|

∑|Uk|
i=1

exp(⟨z′j ,z
′
ki⟩)∑C−1

k=0

∑|Uk|
i=1

exp(⟨z′
j
,z′
ki

⟩)
;

// Calculate the similarity between the
sample and clusters.

end
Sk = {skj}j=1,...,|Bk|;
index=sorted(range(|Sk|), key=lambda i : Sk[i], reverse=True);
// Sort in descending order and return the

indexes.

U+
k

= {Bk[j] | j ∈ index[: |Bk| × β%]};
// Select top β% similar samples to the

cluster from Bk.

Uk.pop(|U+
k
|);

// Pop |U+
k
| oldest samples from Uk.

Uk.push(U+
k
);

// Push U+
k

into Uk for updating.
end
Ûk = Uk ;

end
return {Ûk}k=0,1,...,C−1

Genome Atlas (TCGA) program. The details of each dataset
are as follows and the data distribution is shown in Table I:
• USTC-EGFR1 contains 754 in-house WSIs from 521

patients of lung adenocarcinoma for epidermal growth
factor receptor (EGFR) gene mutation identification,
which are categorized into 5 classes including EGFR
19del mutation, EGFR L858R mutation, non-common
driver mutations (wild type), other driver gene mutations
(other types), and tumor-free tissue (Normal). Notably,
we did not deliberately collect normal cases but took
negative slides from the paraneoplastic tissue of patients
as controls.

• BRCA-HER22 contains 279 in-house WSIs from 279
patients of human epidermal growth factor receptor-2
(HER2) protein and gene expression in breast cancer
patients, which are categorized into 4 subtypes including
the IHC score of 1+, the IHC score of 2+, the IHC score
of 3+, and the IHC score of 0 (Normal).

• TCGA-EGFR is a dataset collected from the TCGA for
epidermal growth factor receptor (EGFR) gene mutation

1The study was approved by the Medical Research Ethics Committee of the
First Affiliated Hospital of the University of Science and Technology of China
(Anhui Provincial Hospital) under the protocol No. USTC-2022-RE-454

2The study was approved by the Medical Research Ethics Committee of
the First Affiliated Hospital of the University of Science and Technology of
China (Anhui Provincial Hospital) under the protocol No. 2023KY-378
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identification of lung adenocarcinoma contains 785 WSIs
from 304 patients, which are categorized into the same 5
subtypes as the USTC-EGFR dataset.

TABLE I
THE DATA DISTRIBUTION OF THE THREE DATASETS.

USTC-EGFR Normal 19del L858R wild type other types Total
Slide 165 118 184 146 141 754
Case – 108 126 146 141 521
BRCA-HER2 HER2 0 HER2 1+ HER2 2+ HER2 3+
Slide 76 77 95 31 279
Case 76 77 95 31 279
TCGA-EGFR Normal 19del L858R wild type other types
Slide 80 22 20 579 84 785
Case 74 7 6 190 27 304

TABLE II
CANDIDATE LABEL SETS FOR THE TCGA-EGFR AND USTC-EGFR

DATASETS

category

candidate
label Normal wild type 19del L858R other types

Normal 1 0 0 0 0
wild type 1 1 0 0 0
19del 1 1 1 0 0
L858R 1 1 0 1 0
other types 1 1 0 0 1

TABLE III
CANDIDATE LABEL SETS FOR THE BRCA-HER2 DATASET

category

candidate
label 0 1+ 2+ 3+

0 1 0 0 0
1+ 1 1 0 0
2+ 1 1 1 0
3+ 1 1 1 1

The two in-house datasets were captured using a Motic
Easyscan Pro 6 under 20X magnification with 0.52 µm/pixel
resolution. We used the genetic testing results of the patients
as the true label for EGFR mutation status and leveraged
the pathologist’s diagnosis of the IHC staining results as the
HER2 grading truth label. Each of the above three datasets
was randomly split into training, validating, and testing sets
following the ratio of 6:1:3 at the patient level in our exper-
iments. We cropped these WSIs into non-overlapping image
patches in size of 256× 256 pixels as the input of the model.
In partial-label learning, each sample requires the allocation
of a candidate label set. The candidate label sets for the
two datasets are configured as shown in Tables II and III
based on prior knowledge provided by pathologists, where
each row represents the candidate label set for a specific
class of slides. The value 0 indicates that the category is
not part of the candidate label set, and the value 1 denotes
that the corresponding category is a candidate label. For
histopathology slides, the tissue categories present in slides
of the same class are fixed. Therefore, samples derived from
slides of the same class should share the same candidate label
set.

We trained the ResNet50 [48] as the encoder with a batch
size of 128 under different methods involved in our experi-

ments. For the self-supervised methods, we train each method
by 100 epochs on the training set. For other state-of-the-art
weakly-supervised learning methods, we train the model using
the early-stop strategy.

All the experiments were implemented in Python with
PyTorch and run on a computer with an Intel Xeon Gold 6126
CPU of 2.60GHz and 4 GPUs of Nvidia Geforce 3090.

B. Ablation Studies
We first verified the effectiveness of the various improve-

ments made in PLCC. The ablation studies in this section are
evaluated based on the performance of whole slide classifica-
tion tasks on the UTSC-EGFR dataset. The degraded models
in the ablation experiments are detailed as follows:
• PLCC-w/o-Specificity: In PLCC, the similarity measure-

ment is achieved by comparing the current sample with
every sample in the clusters, and a softmax function
is used to amplify the specificity between samples. A
prototype measurement method is now adopted as a sub-
stitute, involving the calculation of similarity between the
current sample and the cluster centers of each category, as
described in Equation 10 which calculates the similarity
between the i-th sample and the k-th cluster. Thus, PLCC-
w/o-Specificity is a version of PLCC that employs the
prototype measurement approach.

sik =
exp(⟨z′i, z′k⟩)∑C
j=1 exp(z

′
i, z
′
j)

(10)

• PLCC-w/o-PLL: It is a variant of PLCC that uses the
binary label disambiguation strategy, where a pseudo-
label for one positive tissue cannot be updated to other
positive categories but can only be updated to negative
labels, i.e., y = 0 in our setting, as stated in Equation 11.

ŷ =

{
0 y = 0 or s0 > Tneg

y otherwise
, (11)

where the threshold Tneg is established to identify false
positive samples.

• PLCC-w/o-Proportion: It adopts a different sample up-
dating strategy. Specifically, for the k-th cluster, a group
of samples U+

k is selected based on fixed thresholds from
the mini-batch and updated into the cluster Uk, while
the earliest |U+

k | samples in Uk are dequeued. In this
variance, U+

k is selected based on the following strategy:

U+
k =

{
{z′i | sk0 > Tneg} k = 0

{z′i | sk0 < (1− Tpos)} otherwise
(12)

The ablation experiments results are shown in the Table IV.
The results show that the three modifications in PLCC play
crucial roles. In PLCC-w/o-Specificity, the loss of perception
of differences between samples led to decreases in the AUC
metric by 0.019 and 0.013 under the CLAM framework and
TransMIL, respectively. The removal of partial-label learning
in PLCC-w/o-PLL resulted in a more pronounced decline
compared to PLCC-w/o-Specificity, with AUC reductions of
0.034 and 0.015 under CLAM and TransMIL, respectively,
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TABLE IV
ABLATION EXPERIMENTS OF THE PLCC METHOD ON THE

USTC-EGFR DATASET

Methods CLAM TransMIL
ACC AUC F1-Score ACC AUC F1-Score

PLCC-w/o-Specificity 0.655 0.914 0.659 0.713 0.937 0.713
PLCC-w/o-PLL 0.565 0.899 0.538 0.709 0.935 0.707
PLCC-w/o-Proportion 0.336 0.664 0.236 0.251 0.631 0.130
PLCC 0.717 0.933 0.710 0.740 0.950 0.738

Fig. 4. T-SNE feature visualization of the five categories from USTC-
EGFR dataset, where (a) shows the distribution of feature learned by
PLCC-w/o-Proportion and (b) shows the distribution of feature learned
by PLCC.

and significant decreases in ACC and F1-Score. This sub-
stantiates the effectiveness of partial-label learning in resolv-
ing subtype classification tasks. Notably, the reduction in
metrics under the CLAM framework was more significant
than that under TransMIL, potentially because the CLAM
framework focuses more on the representation of local indi-
vidual instances. Hence, partial-label learning enhances slide
classification performance in the CLAM framework, which
distinguishes different subtypes of tissues in positive slides.
PLCC-w/o-Proportion, which selects update samples through
thresholding rather than proportion, was observed to lead to
an early influx of noise samples into the cluster queue during
training, causing feature collapse and severely impairing whole
slide classification performance in downstream tasks.

Furthermore, features of 50 randomly sampled samples from
each category’s cluster were visualized using T-SNE for both
PLCC-w/o-Proportion and PLCC, as shown in Fig. 4. In the
visualization of PLCC-w/o-Proportion, features from different
clusters were intermingled without distinction, and semantic
category information was not correctly embedded into the
image features. In contrast, in PLCC’s feature visualization,
features from each category’s storage queue were well clus-
tered into a distinct group. It demonstrates the effectiveness
of the proposed method.

C. Comparison with other representation methods
We compared performance with 9 different representation

learning methods on the task of whole slide classification to
validate the advanced nature of the proposed method in the
field of pathology image feature learning.

Table V displays the results of the whole slide classification
under the TransMIL [38] framework. PLCC achieved the
optimal performance in ACC, AUC, and F1 score across three
gene mutation prediction datasets. For instance, in terms of
AUC, PLCC achieved 0.950, 0.853, and 0.919 on USTC-

EGFR, BRCA-HER2, and TCGA-EGFR, respectively, which
represents increases of 5.3%, 5.8%, and 1.0% over the second-
best results. Table VI shows the results of the whole slide
classification within the CLAM [12] framework. PLCC also
attained the highest metrics across the three tasks. Taking
the F1 score as an example, PLCC achieved 0.710, 0.622,
and 0.815 on USTC-EGFR, BRCA-HER2, and TCGA-EGFR,
respectively, which makes improvements of 9.6%, 3.7%, and
0.4% over the second-best results.

Pseudo-label utilizes pseudo-labels as supervision for train-
ing ResNet50 [48], which introduces a significant amount of
label noise. The multiple instance learning approach proposed
by Lerousseau et al. [13] is notably sensitive to the pre-trained
representations and hyperparameter configurations, and it is
challenged by the task of subtype classification. MoCo v2 [49],
a method dependent on negative sample contrast, is prone to
be affected by class imbalance and the limitations of memory
bank capacity. PiCO [43] is a partial-label learning method
developed for tasks involving the analysis of natural scene
images.

BYOL [15] and SimTriplet [32] do not rely on negative
sample contrast, but in the context of gene mutation tasks,
a single slide can include multiple tissues with various mu-
tations. These tissues often intermingle within the slide and
complicate their differentiation. For instance, in the BRCA-
HER2 dataset, the 2+ category contains the tissue character-
istics of three other categories. SimTriplet [32] can inadver-
tently introduce false positives with semantic ambiguity, which
considered adjacent tissues as positive samples and degraded
the representation quality. cTtransPath [52] and RetCCL [51]
are contrastive learning pre-trained frameworks specific to
histopathology images. cTransPath is a Transformer-based
unsupervised representation learning framework pre-trained on
the public TCGA and PAIP datasets. RetCCL is a contrastive
learning framework with a weighted InfoNCE loss and a
group-level InfoNCE loss, which is also pre-trained on TCGA
and PAIP datasets. We employed the released pre-trained
weights of the two models as the patch feature extractors.
Before inference, the two models were exposed to a substantial
amount of publicly available data, which proved to be an
effective strategy for the TCGA-EGFR dataset. However, it
is notable that there are overlaps between the pre-training
datasets of RetCCL and cTransPath, which include TCGA
Lung data, and the TCGA-EGFR test set used in our experi-
ments. Therefore, the results for RetCCL and cTransPath on
the TCGA-EGFR are suffering from data-leakage. Conversely,
these approaches did not yield the desired results when applied
to the two in-house datasets, where the models failed to
identify discriminative representations.

PLIP [50] leveraged text as a form of supervision that is
finer-grained and informationally denser, which pre-trained the
[53] on a substantial volume of image-text pairs. Consequently,
PLIP [50] demonstrates objectively robust performance across
the three datasets and surpasses most of the other methods.
However, it still exhibits a certain degree of disparity when
compared to PLCC.

The proposed PLCC learns the true labels corresponding
to different tissues through the use of candidate label sets,
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TABLE V
COMPARISON OF METHODS ON TCGA-EGFR, BRCA-HER2, AND USTC-EGFR DATASETS WITH TRANSMIL [38], WHERE THE BEST METRICS

ARE DENOTED IN BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED.

Methods USTC-EGFR BRCA-HER2 TCGA-EGFR
ACC AUC F1 Score ACC AUC F1 Score ACC AUC F1 Score

Pseudo-label [48] 0.466 0.802 0.421 0.365 0.742 0.378 0.722 0.644 0.718
Lerousseau et al. [13] 0.368 0.660 0.326 0.428 0.776 0.427 0.729 0.652 0.721
MoCo v2 [49] 0.514 0.816 0.492 0.414 0.758 0.451 0.735 0.655 0.741
BYOL [15] 0.534 0.826 0.517 0.451 0.764 0.402 0.751 0.903 0.745
SimTriplet [32] 0.529 0.841 0.510 0.439 0.780 0.463 0.753 0.896 0.753
PiCO [43] 0.587 0.876 0.578 0.464 0.780 0.451 0.731 0.902 0.758
PLIP [50] 0.610 0.897 0.601 0.479 0.795 0.488 0.736 0.905 0.731
RetCCL [51] 0.585 0.850 0.579 0.452 0.778 0.499 0.741* 0.906* 0.744*

cTransPath [52] 0.556 0.836 0.550 0.512 0.782 0.505 0.757* 0.909* 0.753*

PLCC 0.740 0.950 0.738 0.749 0.853 0.585 0.766 0.919 0.762
* The data may appear inflated due to the overlap between the pre-training datasets of RetCCL and cTransPath, which include TCGA Lung data, and the
TCGA-EGFR test set used in these experiments.

TABLE VI
COMPARISON OF METHODS ON TCGA-EGFR, BRCA-HER2, AND USTC-EGFR DATASETS WITH CLAM [12], WHERE THE BEST METRICS ARE

DENOTED IN BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED.

Methods USTC-EGFR BRCA-HER2 TCGA-EGFR
ACC AUC F1 Score ACC AUC F1 Score ACC AUC F1 Score

Pseudo-label [48] 0.426 0.776 0.403 0.414 0.753 0.415 0.726 0.696 0.727
Lerousseau et al. [13] 0.390 0.710 0.339 0.439 0.759 0.428 0.732 0.701 0.731
MoCo v2 [49] 0.448 0.790 0.377 0.426 0.756 0.390 0.749 0.733 0.758
BYOL [15] 0.462 0.803 0.447 0.441 0.765 0.439 0.735 0.883 0.736
SimTriplet [32] 0.511 0.819 0.464 0.472 0.798 0.476 0.810 0.930 0.811
PiCO [43] 0.529 0.866 0.493 0.465 0.784 0.463 0.765 0.912 0.762
PLIP [50] 0.621 0.894 0.614 0.588 0.834 0.585 0.748 0.909 0.749
RetCCL [51] 0.551 0.828 0.552 0.536 0.804 0.533 0.788* 0.948* 0.789*

cTransPath [52] 0.556 0.842 0.557 0.567 0.843 0.566 0.792* 0.950* 0.791*

PLCC 0.717 0.933 0.710 0.634 0.882 0.622 0.819 0.959 0.815
* The data may appear inflated due to the overlap between the pre-training datasets of RetCCL and cTransPath, which include TCGA Lung data, and the
TCGA-EGFR test set used in these experiments.

(a) The result of BYOL (b) The result of PLIP (c) The result of PiCO (d) The result of PLCC

Fig. 5. The ROC curves of classification results on the TCGA-EGFR dataset with CLAM framework.

which can embed accurate semantic information. Coupled with
a dynamic queue updating strategy, it further enhances the
distinction between representations of different tissue types.

The TCGA-EGFR dataset exhibits a significant data imbal-
ance issue, which comprises 80 WSIs for normal, 22 WSIs for
19del, 20 WSIs for L858R, 579 WSIs for wild type, and 84
WSIs for other types, with the wild type slides constituting
over 70% of the data. Fig. 5 presents the ROC curves for
various categories in the classification of the TCGA-EGFR
dataset within the CLAM [12] framework. BYOL [15] and
PLIP [50] exhibit suboptimal performance, primarily due to
their diminished ability to discriminate among categories with
fewer samples, which results in lower overall metrics as shown
in Fig. 5(a) and (b). The improvement in metrics for PiCO
[43] is reliant on the identification of a subset of the normal

category, yet they still fail to discern the differences in the re-
maining concentrated subtypes as shown in Fig. 5(c). Fig. 5(d)
demonstrates that the proposed PLCC method significantly
enhances the ability to differentiate tissue characteristics across
categories and yields satisfying classification results even for
the sparsely represented categories.

D. Visualization
To further investigate the enhancements brought by the

PLCC method, we visualized the top 20% of tissue regions that
are of most interest when performing biomarkers prediction
tasks under the CLAM framework. The visualization results
are shown in Fig.6 and Fig.7.

In the USTC-EGFR and BRCA-HER2 test set, a random
slide from each category was selected for visualization. Each
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Fig. 6. Heatmap of attention areas and degrees on different category slides in the USTC-EGFR test set.

Fig. 7. Heatmap of attention areas and degrees on different category slides in the BRCA-HER2 test set.
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column represents different views of the chosen slide, where
the first column shows the thumbnails of the slide, and the
second column depicts the ground truth of the cancerous
region for comparison. The remaining column illustrates the
top 20% tissue regions of interest focused by each method.

The attention scores of the regions are represented in
varying colors, with blue indicating a low attention score
(lower focus by the model) and red indicating a high attention
score (higher focus by the model). For a whole slide sample
S = {xi}ni=1 containing n image patches, the attention score
ai for xi in a whole slide classification task is determined by
the following formulas:

A = Attention({xi}ni=1) (13)

ai =
exp(ai)∑
a∈A exp(a)

(14)

where Attention(·) represents the Attention module in the
CLAM framework, and A = {a1, a2, . . . , an} is the output
of the Attention module, with A ∈ Rn. Each element in
A represents the attention score of different image patches,
indicating the model’s focus on different patches.

In Fig. 6, the second column depicts pixel-level tumor
region annotations provided by pathologists where white areas
represent tumor tissues and the column of PLCC-w/o-PLL
illustrates the tissue regions of interest focused by the PLCC-
w/o-PLL method using the prototype measurement method.
Compared with the PLCC-w/o-PLL method, PLCC shows a
higher degree of attention to the top 20% of tissue regions.
The column of the PLCC-w/o-PLL method predominantly dis-
plays yellow-green blocks, while PLCC shows redder blocks,
which indicates a significantly higher focus on the top 20%
regions. Additionally, removing PLL results in some normal
tissue regions being focused on in the L858R and wild type
categories, whereas in the PLCC method, the focused regions
are all within the tumor areas annotated by pathologists.
PLIP is a pre-trained model based on a substantial quantity
of histopathology data. While it is capable of identifying
tumor areas, the attention score is typically low and does
not highlight crucial regions. The responses of PiCO and
cTransPath to the tumor area are found to be less effective.

In Fig. 7, the second column shows the IHC staining
images of each HER2 status where the more dark brown areas
accumulated represent the higher mutation level. Compared
with other methods, PLCC has a lower and balanced response
to the negative HER2 0 slide, and a more prominent response
and comprehensive coverage of the significant areas of positive
slides. Taking HER2 1+ in the second row as an example,
the IHC image demonstrates small and concentrated positive
regions, and PLCC can accurately capture related regions
while reducing attention to other pairs of negative regions.
These visualization results further validate the superiority of
the proposed PLCC method.

E. Discussion
It should be noted that the term ”partial-label” is also

used in image segmentation. This typically refers to images
with annotations that cover only a portion of anatomical

structures or image patches, leading to spatially partial or
sparse segmentation labels. This concept is generally applied
in segmentation tasks involving multi-source datasets [54],
[55]. In this paper, ”partial-label” refers to the definition of
the category for the same object, focusing on defining the
candidate label set and eliminating ambiguous labels [43],
[44].

PLIP [50] is a multi-modal model pre-trained on a
substantial-volume histopathology dataset containing 208,414
image-text pairs named as OpenPath. PLIP is capable of
capturing a more comprehensive and detailed pathological
tissue structure distribution, with the guidance of cleaned and
refined text information to the image content. However, the
OpenPath dataset mainly describes histological features of
pathological images and lacks fine-grained biomarker expres-
sion information resulting in suboptimal performance of PLIP
relative to PLCC.

V. CONCLUSION

We proposed the partial-label contrastive learning frame-
work to eliminate label noise in fine-grained histopathol-
ogy image analysis for biomarker prediction. The partial-
label disambiguation with PLCC achieved more discriminative
representations from complex tissue subtypes. The proposed
dynamic clustering algorithm continuously mines the most
representative features of each category to the clustering queue
and enhances the performance of partial-label disambiguation.
The superiority of this method is validated through extensive
experiments that demonstrate its superior performance com-
pared with seven methods on three gene mutation datasets. The
effectiveness of PLCC is particularly notable in addressing the
challenges of label noise and complex tissue subtypes, which
are prevalent in biomarker predictions from pathology images.
The visualization results, especially the attention heatmaps,
underscore PLCC’s precision in identifying relevant tissue
regions and reinforce its potential to improve pathology image
analysis.
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M. Gerstung, and X. Bai, “Teacher-student collaborated multiple
instance learning for pan-cancer pdl1 expression prediction from
histopathology slides,” Nature Communications, vol. 15, no. 1, p. 3063,
2024.

[5] S. Volinsky-Fremond, N. Horeweg, S. Andani, J. Barkey Wolf, M. W.
Lafarge, C. D. de Kroon, G. Ørtoft, E. Høgdall, J. Dijkstra, J. J.
Jobsen et al., “Prediction of recurrence risk in endometrial cancer with
multimodal deep learning,” Nature Medicine, pp. 1–12, 2024.

[6] B. Acs, M. Rantalainen, and J. Hartman, “Artificial intelligence as the
next step towards precision pathology,” Journal of internal medicine,
vol. 288, no. 1, pp. 62–81, 2020, doi:10.1111/joim.13030.

https://pubs.thesciencein.org/journal/index.php/cbl/article/view/451/293


12 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

[7] A. Echle, N. G. Laleh, P. L. Schrammen, N. P. West, C. Trautwein, T. J.
Brinker, S. B. Gruber, R. D. Buelow, P. Boor, H. I. Grabsch et al., “Deep
learning for the detection of microsatellite instability from histology
images in colorectal cancer: a systematic literature review,” ImmunoIn-
formatics, vol. 3, p. 100008, 2021, doi:10.1016/j.immuno.2021.100008.

[8] M. G. Hanna, O. Ardon, V. E. Reuter, S. J. Sirintrapun, C. England,
D. S. Klimstra, and M. R. Hameed, “Integrating digital pathology into
clinical practice,” Modern Pathology, vol. 35, no. 2, pp. 152–164, 2022,
doi:10.1038/s41379-021-00929-0.

[9] J. Yang, H. Chen, Y. Zhao, F. Yang, Y. Zhang, L. He, and J. Yao, “Remix:
A general and efficient framework for multiple instance learning
based whole slide image classification,” in Medical Image Computing
and Computer Assisted Intervention–MICCAI 2022: 25th International
Conference, Singapore, September 18–22, 2022, Proceedings, Part II.
Springer, 2022, pp. 35–45, doi:10.1007/978-3-031-16434-7 4.

[10] Y. Zhao, Z. Lin, K. Sun, Y. Zhang, J. Huang, L. Wang, and J. Yao,
“Setmil: spatial encoding transformer-based multiple instance learn-
ing for pathological image analysis,” in Medical Image Computing
and Computer Assisted Intervention–MICCAI 2022: 25th International
Conference, Singapore, September 18–22, 2022, Proceedings, Part II.
Springer, 2022, pp. 66–76, doi:10.1007/978-3-031-16434-7 7.

[11] Y. Zheng, J. Li, J. Shi, F. Xie, and Z. Jiang, “Kernel attention transformer
(kat) for histopathology whole slide image classification,” in Medical
Image Computing and Computer Assisted Intervention–MICCAI 2022:
25th International Conference, Singapore, September 18–22, 2022,
Proceedings, Part II. Springer, 2022, pp. 283–292, doi:10.1007/978-3-
031-16434-7 28.

[12] M. Y. Lu, D. F. Williamson, T. Y. Chen, R. J. Chen, M. Barbieri,
and F. Mahmood, “Data-efficient and weakly supervised computational
pathology on whole-slide images,” Nature biomedical engineering,
vol. 5, no. 6, pp. 555–570, 2021, doi:10.1038/s41551-020-00682-w.

[13] M. Lerousseau, M. Vakalopoulou, M. Classe, J. Adam, E. Battistella,
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