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Abstract

Content-based histopathological image retrieval (CBHIR) has become popular in recent years in histopathological im-
age analysis. CBHIR systems provide auxiliary diagnosis information for pathologists by searching for and returning
regions that are contently similar to the region of interest (ROI) from a pre-established database. It is challenging
and yet significant in clinical applications to retrieve diagnostically relevant regions from a database consisting of
histopathological whole slide images (WSIs). In this paper, we propose a novel framework for regions retrieval from
WSI database based on location-aware graphs and deep hash techniques. Compared to the present CBHIR framework,
both structural information and global location information of ROIs in the WSI are preserved by graph convolution
and self-attention operations, which makes the retrieval framework more sensitive to regions that are similar in tissue
distribution. Moreover, benefited from the graph structure, the proposed framework has good scalability for both the
size and shape variation of ROIs. It allows the pathologist to define query regions using free curves according to the
appearance of tissue. Thirdly, the retrieval is achieved based on the hash technique, which ensures the framework
is efficient and adequate for practical large-scale WSI database. The proposed method was evaluated on an in-house
endometrium dataset with 2650 WSIs and the public ACDC-LungHP dataset. The experimental results have demon-
strated that the proposed method achieved a mean average precision above 0.667 on the endometrium dataset and
above 0.869 on the ACDC-LungHP dataset in the task of irregular region retrieval, which are superior to the state-of-
the-art methods. The average retrieval time from a database containing 1855 WSIs is 0.752 ms. The code is available
at https://github.com/zhengyushan/lagenet
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1. Introduction

With the development of digital pathology and artifi-
cial intelligence, computer-aided cancer diagnosis meth-
ods based on histopathological image analysis (HIA) Lit-
jens et al. (2017); Gurcan et al. (2009); Hollon et al.
(2020) have been widely studied. In recent years, the stud-
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ies focused on the histopathological whole slide image
classification Zheng et al. (2017); Xu et al. (2017), seg-
mentation Xu et al. (2014); Bejnordi et al. (2016, 2017);
Jia et al. (2017); Falk et al. (2019), object detection Xu
et al. (2015); Veta et al. (2019), etc. Generally, these
applications can provide the pathologists diagnosis sug-
gestions and even automatically generate reports within
quantitative data and diagnostic descriptions. However,
these applications can hardly provide the dependence or
reason of the decision. The information for diagnoses is
limited.

Content-based histopathological image retrieval (CB-
HIR) is an emerging approach in the domain of
HIA Zhang and Metaxas (2016); Li et al. (2018); Zheng
et al. (2018a); Kalra et al. (2020). Compared to the typi-
cal HIA methods mentioned above, CBHIR methods pro-
vide more valuable information, including similar regions
from diagnosed cancer cases, the corresponding meta-
information, and the diagnosis reports of experts stored
along with the cases in the digital pathology platform.
It can increase the information and improve the inter-
pretability of the automatic diagnosis, which is of devel-
opmental significance to pathologists.

With the rapid expansion of digital WSIs archive, it is
recently crucial to develop effective retrieval systems for
large-scale WSI database. However, the histopathology
WSIs are gigapixel digital images with complex textural
information and the query image is a region of interest
(ROI) in various size and shape. It makes the CBHIR for
the WSI database a challenging task. The existing meth-
ods are confronted with many difficulties, which are re-
flected in three aspects: 1) Due to the constraint of the
deep learning model, the regions to establish the database
and the query region are limited to rectangle in a fixed
size Ma et al. (2017); Shi et al. (2018); Peng et al. (2019).
In this case, multiple models need to be established for the
retrieval requirement in different sizes. 2) The retrieval
for large regions is commonly completed by measuring
the distance between two sets of local features Jimenez-
del Toro et al. (2017); Zheng et al. (2018b); Chen et al.
(2020). The internal adjacency relationship of these local
features is not considered, and meanwhile, the computa-
tional complexity is expensive. 3) The sub-regions are
cropped from the WSI and then regarded as independent
items Ma et al. (2018); Zheng et al. (2019) in the database.
The global location information of the sub-region in the

WSI is discarded. The above problems lead to a series
of defects in precision, efficiency, and convenience of the
retrieval system when applied to the practical database.

In this paper, we simultaneously address the above
three problems and propose a novel CBHIR framework
for diagnostically relevant region retrieval from large-
scale WSI-database based on graphs and deep hashing
method. Unlike the present sub-region retrieval frame-
works, we proposed constructing location-aware graphs
(LA-Graph) for the sub-regions in the WSI to describe
both the structural information within the regions and
the global location information of the region in the WSI.
Meanwhile, we designed a novel location-aware graph en-
coding network (LAGE-Net) based on graph convolution
and self-attention operations to encode the LA-Graph for
retrieval. Moreover, we employed the hashing technique
to ensure the efficiency of retrieval. The experiments on
two large-scale datasets have demonstrated the effective-
ness of our method.

The contribution of this paper to the problem is three-
fold:

1) We proposed a novel histopathology image retrieval
framework based on location-aware graphs for databases
consisting of whole slide images. To our knowledge, we
are the first to use the graphs to simultaneously represent
the image content, the internal adjacency and the global
location information for histopathology ROIs. Specif-
ically, the local features are regarded as the nodes of
the graph, the spatial connection relations of the features
are described as the edges of the graph and distances of
patches to the border of the tissue are represented by dis-
tance embedding. The definition of LA-Graph determines
the sub-regions for retrieval are size- and shape-scalable.
It allows the pathologists to define query regions by free-
curves.

2) We designed a LAGE-Net to encode the LA-Graph
into binary codes, which are used to index the sub-regions
in the WSI and the query ROI. The spatial adjacency in-
formation in a LA-Graph is extracted by graph convo-
lution operations and the global location information is
modeled along with the local features by self-attention
operations. Finally, multiple information is combined and
converted into binary codes by a hash module. The local
features, spatial information and location information for
a sub-region in the WSI are effectively extracted and pre-
served by the LAGE-Net. The LAGE-Net can be trained
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end-to-end from graphs with a variable number of nodes
to the binary-like codes and the retrieval can be effec-
tively achieved based on hamming distances between bi-
nary codes. It determines the proposed method is applica-
ble to practical large-scale WSI databases.

3) We conducted comprehensive experiments to ver-
ify the proposed retrieval framework on an in-house en-
dometrium dataset with 2650 WSIs and the public ACDC-
LungHP dataset with 150 WSIs and compared it with 6
state-of-the-art methods. The experimental results have
demonstrated that the proposed method achieves the best
performance in the task of irregular region retrieval with
a mean average precision above 0.667 on endometrium
dataset and above 0.869 on the ACDC-LungHP dataset.
The average retrieval time from a database within 1855
WSIs is 0.752 ms.

The remainder of this paper is organized as follows.
Section 2 reviews the history of histopathological image
retrieval. Section 3 introduces the methodology of the
proposed method. The experiment and discussion are pre-
sented in Section 4. Section 5 summarizes the contribu-
tions. A part of this work has been presented on the con-
ference paper Zheng et al. (2019).

2. Related Works

The objects in the studies on CBHIR have been devel-
oped through cells/nuclei, image patches and whole slide
images with the development of digital pathology. The
typical methods related to our work are reviewed in this
section.

2.1. Retrieval methods for cells and patches

Early studies focused on the cell retrieval from histo-
logical images that were captured under the optical mi-
croscopy Comaniciu et al. (1998b,a); Wetzel et al. (1999).
With the development of the digitalization of histological
sections, CBHIR frameworks for patches retrieval were
proposed. Zheng et al. (2004); Zhou and Jiang (2004)
and Mehta et al. (2009) employed the classical image fea-
tures to depict the histopathological images and achieved
the patch-level retrieval. Then, the retrieval methodology
was studied in various aspects.

A number of works concentrated on extracting high-
level features of histopathological images to improve the

accuracy of retrieval. Specifically, CBHIR frameworks
based on manifold learning Doyle et al. (2007); Sparks
and Madabhushi (2011), semantic analysis Caicedo et al.
(2008); Caicedo and Izquierdo (2010); Zheng et al.
(2014), spectral embedding Sridhar et al. (2011) and fine-
designed local descriptors Tizhoosh and Babaie (2018);
Erfankhah et al. (2019) have been developed and have
proven effective in improving the accuracy of retrieval.
Meanwhile, Gu and Jie (2018); Zheng et al. (2018a); Gu
and Yang (2019) proposed utilizing the contextual infor-
mation by combining features from multiple magnifica-
tions of histopathological images to enhance the repre-
sentations of image patches and thus improve the perfor-
mance of retrieval. As for the online usage of CBHIR, the
security of retrieval has also been considered Cheng et al.
(2019).

Besides the retrieval accuracy, the efficiency of CB-
HIR has become increasingly popular in the recent years.
To satisfy the application for database consisting of mas-
sive histopathological images, hashing techniques were
introduced. Typically, Zhang et al. (2015b) ,Zhang et al.
(2015a) and Jiang et al. (2016) introduced supervised
hashing with kernels (KSH) Liu et al. (2012) into the CB-
HIR. Shi et al. (2017) utilized a graph hashing model to
learn the similarity relationship of histopathological im-
ages. With hashing functions, the images are encoded into
an array of binary codes. And the similarities among im-
ages are measured by Hamming distance, which is able
to be calculated very efficiently using bitwise operations
by computer. More recently, Shi et al. (2018), Sapkota
et al. (2018) and Peng et al. (2019) constructed end-to-
end deep learning frameworks based on CNNs to directly
encode histopathological images into binary codes. The
overall performance of patch-level CBHIR has been fur-
ther improved.

2.2. Whole slide image database retrieval
The practical digital histopathology scans are generally

stored in the format of whole slide images. Therefore,
it is crucial to study the approach for retrieving relevant
sub-regions from the WSIs for a region the pathologist
provided during the diagnosis.

In the previous study, Ma et al. (2017) proposed divid-
ing the WSIs into sub-regions following the sliding win-
dow paradigm and encoding the individual regions to es-
tablish the retrieval database. It is a convenient strategy to
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index WSIs for sub-regions retrieval. However, the tissue
structure was ignored in the division of WSIs and retrieval
instances in the database were limited to rectangle images
in fixed sizes. It gaps from the applicable situation where
pathologists usually define the ROIs with free-carves in
various shapes and sizes.

Then, several retrieval strategies were developed to im-
prove the scalability of the retrieval framework. Zheng
et al. (2018a) proposed segmenting a WSI into super-
pixels and defining the super-pixels as retrieval instances.
Further, Ma et al. (2018) proposed merging the super-
pixels into irregular regions based on selective search Ui-
jlings et al. (2013) to index the WSI. The query ROI
in these methods was not restricted in rectangle regions.
Chen et al. (2020) proposed to represent the annotation
regions by fusing patch-level features and encoding the
region representation by supervised hashing for retrieval.
However, the representation of an irregular region was ob-
tained by the quantification of local features. The scale
information of the region cannot be described. In the
methods Jimenez-del Toro et al. (2017) and Zheng et al.
(2018b), the composition of the images was considered
by measuring the similarity between each pair of local
features across two regions. Nevertheless, the adjacency
relationship of different types of histological objects was
not considered in these methods. Therefore, the structural
similarity between tissue regions is difficult to recognize
in the retrieval procedure.

To conquest the drawbacks in the present methods, we
proposed to establish an end-to-end network based on the
LA-Graphs to encode the regions into uniform indexes,
where the local features, the adjacency relationships, and
the location information are hopefully preserved in the in-
dexes and reflected in the results of retrieval.

3. Method

The overview of the framework is illustrated in Fig. 1.
The WSIs are first divided into patches and converted
into an image feature tube with a pre-trained convolu-
tional neural network (CNN) He et al. (2016); Huang
et al. (2017). Then, sub-region graphs are generated
based on the spatial relationships and feature similari-
ties of patches. Moreover, the minimum distances of the
patches to the border of the tissue are measured to identify

the location of the graph in the WSI. Finally, the location-
aware graphs (LA-Graphs) are constructed and fed into
the designed LAGE-Net to obtain the binary indexes for
retrieval. The method for LA-Graph construction and the
LAGE-Net are the main components of the framework,
which are elaborated in this section.

3.1. Location-aware graph construction

The flowchart to generate the graphs for a WSI is il-
lustrated in Fig. 2. The patches in a WSI are clustered
into sub-regions based on their CNN features. Then, the
sub-regions are represented with graphs by regarding the
patches as the graph nodes and the spatial adjacency as
the graph edges.

Letting Ii represent the i-th patch in a WSI, the process
of feature extraction can be described as

xi = FCNN(Ii),

where FCNN represents a CNN feature extractor that takes
an image patch as the input and outputs d f -dimensional
column vector.

Then, the hierarchical agglomerative clustering (HAC)
algorithm Day and Edelsbrunner (1984) is employed to
merge the patches in the WSI based on the CNN fea-
tures. HAC is designed to merge a set of samples to an as-
signed number of clusters. In each iteration of HAC, the
two most similar clusters under specific similarity mea-
surement are merged. Specifically for a WSI, we pro-
pose regarding the patch features {xi}

ms
i=1 as initial clus-

ters and utilizing error sum of squares (EES) as the sim-
ilarity measurement between clusters. Besides, an adja-
cency matrix As ∈ {0, 1}ms×ms is generated to indicate
the connectivity of ms patches in the s-th WSI, where
ai j = 1, ai j ∈ As indicates the i-th and the j-th patch are
spatially 4-connected and ai j = 0 otherwise. To ensure
the merged sub-regions are spatially connected, only the
pairs associated with ai j = 1 are allowed to be merged in
the iterations of HAC. Fig. 2b illustrates the merged sub-
regions, where a colored area represents a sub-region.

Another important information considered in the graph
is the global location of the sub-region in the WSI. The
distance of the sub-region, especially the cancerous re-
gion, to the border of the tissue implies the information
about the size of the tumor, the depth of tumor infiltration,
etc., that is important indicators of tumor classification
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Figure 1: The proposed CBHIR framework. In the offline stage, the WSIs are first divided into patches following the sliding window paradigm
and a CNN is trained based on the patch labels to extract image features. Then, a WSI is divided into sub-regions based on the features and the
spatial adjacency of the patches. Next, A graph is constructed for each sub-region by regarding the patches within the sub-region as nodes and the
spatial adjacency as edges. Additionally, the distances of the patches to the tissue border are considered in the graph. Finally, the LAGE-Net is
trained based on the graphs for sub-region encoding and indexing. In the online retrieval stage, the region the pathologist queried is converted into
a binary code using the trained models. The most relevant regions are retrieved by measuring the similarities between the query code and those in
the database and finally returned to pathologists for diagnosis reference.

and grading. Motivated by this, we propose measuring the
minimum distance of each patch to the border of the tissue
and adding it to the tissue graph data. It makes the graph
involve the tissue depth information, which is expected
to benefit the subsequent encoding process. Specifically,
we apply distance transformation to the tissue mask seg-
mented from the WSI, as shown in Fig. 1(e-f) and record
the minimum distance to the tissue border for each patch
center. The border distance of the j-th patch is denoted by
ϕ j. For a uniform representation, ϕ j is scaled to ϕ j ∈ [0, 1]
by the minimum and maximum values in the dataset.

Finally, we construct the location-aware graph for
each subregion, which can be represented as G =

(A,X, φ), where A ∈ Rm×m is an adjacent matrix that
defines the connectivity in G with m nodes, and X =

(xT
1 , x

T
2 , ..., xm)T ∈ Rm×d f denotes the node feature matrix

assuming each node is represented as a d f -dimensional

vector, and φ = (ϕ1, ϕ2, ..., ϕm). For convenience, all the
graphs in the s-th WSI are represented by set Gs = {Gi|i =

1, 2, ..., ns}, where ns denotes the number of graphs in the
s-th WSI. The set Gs covers the entire content of the WSI
and thereby can be used to index the WSI.

In summary, the algorithm of the LA-Graph construc-
tion is arranged as Algorithm 1.

3.2. LAGE-Net for region encoding

It is challenging to encode the graph node attributes
with local adjacency and global location information into
a uniform representation. In this paper, we propose a
location-aware graph encoding network (LAGE-Net) to
achieve this task. The structure of LAGE-Net is pre-
sented in Fig. 3. The CNN features for a graph are firstly
embedded by a linear transformation, then fed into the
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(a) (b) (c) (d)

Figure 2: The flowchart of tissue graph generation, where (a) is a digital WSI, (b) illustrates the sub-regions clustered by Algorithm 1, (c) shows
the graphs established on the sub-regions, and (d) jointly presents a graph and its corresponding region where the nodes are drawn on the centers of
patches.

stacked blocks consisting of the LAGE module and feed-
forward linear layers to obtain the graph representation.
Finally, the graph representation is transferred into the bi-
nary code by a hash module. Meanwhile, layer normaliza-
tion and residual connection are inserted (as shown in 3a).
The main component of LAGE-Net is the LAGE module,
which is elaborated as follows.

3.2.1. LAGE module
The proposed LAGE module is composed of graph

convolution, self-attention and linear transformation op-
eration. The flowchart of the module is illustrated in Fig.
3b.
1) Internal relationship encoding with graph convolution

The adjacency matrix A in a tissue graph describes the
internal relationship of the graph nodes. The message-
passing based on A is essential in the graph representation
learning. Therefore, we firstly apply the GCN methodol-
ogy proposed by Kipf and Welling (2016) to achieving the
internal relationship encoding. Generally, a step of graph
convolution can be formulated as

Hgc = D̃−
1
2 ÃD̃−

1
2 XeWgc, (1)

where Hgc ∈ Rm×de denotes the node embeddings af-
ter the l-th step of graph convolution, de denotes the
dimension of the embeddings, Ã = A + E1, D̃ =

diag(
∑

j Ã1 j,
∑

j Ã2 j, ...,
∑

j Ãn j), and W(l) ∈ Rde×de is a
trainable weight matrix. For simplification, we define

1E denotes the unit matrix.

Ā = D̃− 1
2 ÃD̃− 1

2 and rewrite the equation 1 as

Hgc = ĀXeWgc, (2)

Specifically, Xe represents the original embeddings of
graph nodes, which in our method is defined as the lin-
ear transformation of the CNN features followed by layer
normalization (LN) operation.
2) Global location encoding with self-attention

In this paper, the global location of the sub-regions
in the WSI is proposed to be also important for diag-
nostically relevant retrieval. Motivated by the usage of
the position embedding in the Transformer Vaswani et al.
(2017), we determine to build global location embeddings
for the graph nodes and merging the global location infor-
mation into the graph representation. Specifically, we de-
fine the distance index ϕ̄ j = [ϕ j×Ndist] with Ndist controls
the intervals of the distance indexing and is empirically
set as 64 in the experiment. Then, we define

D = (dT
ϕ̄1
,dT

ϕ̄2
, ...)T ∈ Rm×de (3)

to be the global location embeddings that are indexed by
{ϕ̄ j}

m
j=1. dϕ̄ j is generated following sinusoidal embedding

formula in Transformer Vaswani et al. (2017). Then, D is
merged to the original node embeddings Xe by the opera-
tion

Xsa = Xe + D, (4)

Here, Xsa ∈ Rm×de involves the information from both the
image patterns and global locations of the patches. Next,
we apply the self-attention mechanism to build relations
between the location-aware representations. This proce-
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Figure 3: The location-aware graph encoding network (LAGE-Net) consists of a feature embedding layer, multiple stacked LAGE blocks, and a
hash layer. It takes the location-aware graph as input and outputs a binary code that is used to index the graph for retrieval.

dure can be represented as

Asa = S o f tmax(
XsaWq · (XsaWk)T

√
datt

), (5)

Hsa = AsaXsaWv, (6)

where Wk,Wq,Wv ∈ Rde×datt represents the weights for
Query, Key, and Value branch of the self-attention mod-
ule, respectively.
3) Information integration with linear transformation

Finally, the outputs of the graph convolution and self-
attention are concatenated and then fed into a linear trans-
formation layer, to integrate the patterns extracted from
different aspects. The linear transformation layer is for-
mulated as

Hl = GELU([Hgc; Hsa] ·Wl + bl), (7)

where GELU represents the Gaussian error linear units
function, Wl and bl are the weights and bias.

It is notable that the graph convolution (Eq.2) and self-
attention (Eq.6) share the same formulation. The main
difference is that the message-passing matrix Ā is gen-
erated from the natural adjacency relationship of graph
nodes and fixed in the calculation, and Asa is online gen-
erated based on the current state of each node regard-
ing both the image content and the global location of the
nodes. More generally, we extended the self-attention to
the multi-head formulation to allow the LAGE module to
observe more aspects of relationships behind the image
content and the global location information.

3.2.2. Binary indexing with Hash function
In our method, the network is used to generate graph re-

gion indexes that are effective for data retrieval. To learn
the representation of the graph for the hash function, a
trainable token is concatenated to the initial graph em-
beddings referring to BERT and ViT, which can be for-
mulated as

Xe ← [xT
h ; XT

e ]T. (8)

The learnable token is regarded as another node that is
connected with all other nodes in the graph embedding
calculation, for which the adjacency matrix A is corre-
spondingly modified. Meanwhile, the token participates
in all the self-attention computations.

To ensure the framework is applicable to the practical
large-scale pathological database, we built a head layer
with hash functions on the output of the last MLP. Suppos-
ing zh =∈ Rde represents the final MLP output of learnable
token, the hashing function is defined as

yh = tanh(zhWh + bh), (9)

where Wh ∈ Rde×dh and bh ∈ Rdh are the weights and
bias for the hash functions, dh is the dimension of bi-
nary codes, and tanh represents the hyperbolic tangent
function. yh ∈ (−1, 1)dh is the network outputs that
can be simply converted into binary codes by equation
h = sign(yh) ∈ {−1, 1}dh . Letting Y ∈ (−1, 1)Ng×dh denote
the binary-like codes of Ng graphs, the objective function
to minimize for training the LAGE-Net is defined as

J =
1

Ng
‖

1
dh

YYT − C‖2F + λ‖WT
h Wh − E‖2F (10)

7



Algorithm 1: The algorithm of tissue graph con-
struction.

Input:
ms ← The number of patches in the s-th WSI;
{xi|i = 1, 2, ...,ms} ← The feature vectors of patches;
As ∈ {0, 1}ms×ms ← The adjacency matrix of patches;
Φs ∈ [0, 1]ms×ms ← The distance transformation matrix
for patch centers;
ĝs ← The target number of graphs (ĝs ≤ ms);
Output: Gs

1 for i = 1 to ms do
2 Ci ← {xi};
3 end
4 C ← {Ci|i = 1, 2, ...,ms};
5 gs ← ms;
6 while gs > ĝs do
7 T ← ø;
8 for (Ci,C j) in
9 {(Ci,C j)|∃xp ∈ Ci,∃xq ∈ C j, i , j, s.t.apq = 1}

do
10 di j ←EES(Ci ∪C j);
11 T ← T ∪ {di j};
12 end
13 index (p, q)← arg min(i, j)(T );
14 Cp ← Cp ∪Cq;
15 C ← C \Cq;
16 gs ← gs − 1;
17 end
18 Gs ← ø;
19 for Ci in C do
20 Xi ← (x1, ..., x j, ..., x|Ci |)x j∈Ci ;
21 Ai ← Seek As for the adjacent relationship of

patches corresponding to Xi;
22 φi ← Seek Φs for the distance values of patches

corresponding to Xi;
23 Gi ← (Xi,Ai, φi);
24 Gs ← Gs ∪ {Gi};
25 end
26 return Gs;

where C ∈ {−1, 1}Ng×Ng is the pair-wise label matrix in
which ci j = 1 represents the i-th graph and the j-th graph
are relevant and ci j = −1 otherwise. λ is the weight coef-
ficient of the orthogonal regularization and is empirically
set to 0.01 in this paper. Finally, the proposed LAGE-
Net is trained end-to-end from the input graph with CNN-
features to the output Y. For simplification, the LAGE-

Table 1: Data allocation of the Endometrium-2K dataset.
Type Name WDEA MDEA LDEA SEIC Normal Total
Number 813 821 277 152 587 2650

(a) WDEA (b) MDEA (c) LDEA (d) SEIC (e) Normal

Figure 4: Instances in the endometrial WSI dataset, where (a) is Well-
differentiated Endometrioid adenocarcinoma (WDEA), (b) is Moder-
ately differentiated Endometrioid adenocarcinoma (MDEA), (c) is Low
differentiated Endometrioid adenocarcinoma (LDEA), (d) is Serous
endometrial intraepithelial carcinoma (SEIC), (e) is Normal and the
ground-truth for the cancerous regions are provided on the second row.

Net is represented as h = FLAGE−Net(G).

3.3. Efficient retrieval with binary codes

For each WSI in the retrieval database, a set of binary
codes that represent the graphs in the WSI can be obtained
using the trained feature extraction model FCNN and hash
model FLAGE−Net. When retrieving, the region the pathol-
ogist queries is divided into patches and converted into
binary codes using the same model. Then, the similarities
between the query code and those in the database are mea-
sured using Hamming distance referring to Zhang et al.
(2015b); Zhang and Metaxas (2016); Shi et al. (2018);
Zheng et al. (2019). After ranking the similarities, the
most relevant regions are retrieved and finally returned to
the pathologist.

4. Experiments

4.1. Experimental setting

The experiments were mainly conducted on a public
dataset and an in-house dataset of histopathological whole
slide images. The profiles of the datasets are provided as
follows.
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• Endometrium-2K contains 2650 WSIs of en-
dometrium histopathology from 2650 patients col-
lected by Tianjin Fifth Central Hospital of China.
These WSIs were scanned under a lens of
20× and categorized to 5 types of endometrial
pathology, including Well-differentiated Endometri-
oid adenocarcinoma (WDEA), Moderately differ-
entiated Endometrioid adenocarcinoma (MDEA),
Low differentiated Endometrioid adenocarcinoma
(LDEA), Serous endometrial intraepithelial carci-
noma (SEIC), and Normal. All the cancerous regions
were annotated by expert pathologists. The WSI in-
stances are shown in Fig. 4, and data allocation is
given in Table 1. In the experiment, 30% WSIs were
randomly selected as the testing dataset (to gener-
ate query regions), and the remainders were used to
train the retrieval models and establish the retrieval
database.

• ACDC-LungHP (Li et al. (2021)) contains 150 WSIs
within lung cancer regions annotated by patholo-
gists.2 In the evaluation, 30 WSIs were randomly
selected as the testing dataset, and the remainders
were used to train the retrieval models and establish
the retrieval database.

All the WSIs were divided into square patches under
lenses of 20× following the sliding window paradigm.
The step of the window was set half of the length of the
patch side. DenseNet Huang et al. (2017) was employed
as the CNN structure to extract patch features. The global
average pooling (GAP) layer of the DenseNet structure
was used as the feature extractor. The patch size was set
224 × 224 to fit the input of DenseNet. Graphs were con-
structed for each WSI using the algorithm provided in Al-
gorithm 1. For convenience, the graphs for establishing
the retrieval database are represented as a set D and the
query graphs are correspondingly represented as Q.

We first conducted experiments to determine hyper-
parameters of models involved in our method on the train-
ing set. Then, the retrieval performance was evaluated

2The dataset is accessible at https://acdc-lunghp.grand-
challenge.org. Since the annotations of the testing part of the data
set are not yet published, only the 150 training WSIs of the data were
used in this paper.

on the testing set and compared with the state-of-the-art
methods.

In the evaluation, the graphs that contain more than
10% cancerous pixels referring to the pathologists’ anno-
tations were defined as Cancerous Graph, the graphs con-
taining none cancerous pixels were regarded as Cancer-
free Graph and the remainders were not counted in the
evaluation. For the Endometrium-2K dataset, the label of
a Cancerous Graph is set the same as the WSI to which
graph belongs. Correspondingly, only the returned graphs
that share the same label with the query one were consid-
ered as relevant in both the training and evaluation stage.
The average precision of retrieval P@k for top-k-returned
regions and the mean average precision mAP are used as
the metrics. Letting rik = 1 indicates that the k-th returned
result shares the same label with the i-th query graph and
rik = 0 otherwise, P@k and mAP can be defined by equa-
tions

P@k =
1
|Q|

|Q|∑
i=1

pi(k),

mAP =
1
|Q|

|Q|∑
i=1

∑|D|
k=1 pi(k) · rik∑|D|

k=1 rik
,

where | · | denotes the length of the set and

pi(k) =

∑k
j=1 ri j

k

represents the retrieval precision of the top-k returned re-
sults for the i-th query instance. The higher the metrics,
the better the retrieval performance.

All the experiments were conducted in python with py-
torch and run on a computer cluster with 10 available
GPUs of Nvidia Geforce 2080Ti.

The Adam optimizer was employed to train the model.
The initial learning rate for training the LAGE-Net is 3 ×
10−4

4.2. The structure of feature extraction CNN

The CNN used for patch feature extraction was trained
via a subtype classification task. Specifically, patches in
size of 224 × 224 pixels were sampled from the train-
ing WSIs. The patches containing above 75% percentage
of cancerous pixels were labeled as positive samples, the
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Figure 5: The mAP− #FLOPs curves as functions of the hyper-parameters of the LAGE-Net, where the average mAP of the 5-fold cross-validation
is presented by each data point and the standard variance of the 5 trials is drawn with red bar.

patches involving none cancerous pixels were regarded as
negative samples, and the other patches were not used.

The depth of DenseNet was tuned within the training
set in the scope suggested in Huang et al. (2017). The
best depth was determined according to the mean classi-
fication error of five-fold cross-validation on within the
training slides. Finally, the depth of the CNN was deter-
mined as 121 according to the validation error, for which
the dimension of the patch features (d f ) is 1024.

4.3. The structure of LAGE-Net

The body of the LAGE-Net is stacked by multiple
LAGE blocks and each block is composited of a graph
convolution head and multiple self-attention heads. The
number of blocks Nb, the number of attention heads Nh

and the dimension of the embeddings de determine the
computational complexity of the encoding process and the
performance of retrieval. These hyper-parameters were
tuned over a wide range and selected based on the best
mAP obtained through five-fold cross-validation in the
training set. Note that the division of the data for the
cross-validation here was the same with that in the CNN
training stage.

The mAP and the number of floating-point operations
(#FLOPs) as functions of hyper-parameter settings for the
Endometrium-2K dataset are presented in Fig. 5. The
other hyper-parameters were set fixed when one hyper-
parameter was tuned.

1) The number of blocks Nb determines the depth of
the LAGE-Net. A larger Nb helps extract higher level of
information from tissue graphs but would also increase
the risk of over-fitting. Nb was tuned from 4 to 12 with

a step of 2 and the results (as shown in Fig. 5a) indicate
Nb = 8 is optimum for the dataset.

2) The number of heads Nh determines the width of
the network. More heads for self-attention enable the net-
work to build node relations in more aspects and therefore
generate better graph representations for retrieval. Nh was
tuned from 0 to 14 with a step of 2. Note that Nh = 0
means self-attention operations along with the global lo-
cation information are entirely omitted and the graph rep-
resentation learning is only based on the local adjacency
information. The results in Fig. 5b show that Nh = 4
and Nh = 8 achieved comparable retrieval performance.
Finally, we decided to use 4 self-attention heads in each
LAGE module in pursuit of lower computation.

3) The dimension of embedding de affects the total
floating-point operations of the linear transformation and
the multi-head self-attention after Nb and Nh are decided.
The computational complexity of LAGE-Net is in direct
proportion to O(NbNhd2

e ) when the input graph is fixed. In
this experiment, we tune de from 128 to 1204. As shown
in Fig. 5c, the mAP steady increases as de enlarges, but
the computational amount suffers from quadratic augmen-
tation. To ensure the retrieval can be quickly completed
and meanwhile maintain a high retrieval precision, we set
de = 512 in the following experiment.

4.4. Ablation study
The patch features X are the essential information that

is required to be encoded by the LAGE-Net. Besides,
The internal adjacency information described by A and
the global location information in the distance embedding
D are also proposed to be important in this paper. The
former is mainly modeled by the graph convolution in
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the LAGE module and the latter is modeled by the self-
attention operation along with the patch features. We con-
ducted ablation experiments to certify the effectiveness of
the two factors. The ablation models are as follows.

• LAGE-Net w/o dist. The distance embedding dϕ̄ j is
replaced with a common positional embedding d j

that is associated to the patch index j. As a result, the
global location information of the graph is removed.

• LAGE-Net w/o adj. The adjacency matrix in the
graph convolution path is set to A = 0. Conse-
quently, the internal structure constraint is not con-
sidered in the graph encoding process.

• LAGE-Net w/o dist & adj. Both the above two types
of ablation are performed.

The retrieval performance is compared in Table 2. The
average precision and mAP apparently decreased as the
internal adjacency or the global location information of
the graph was discarded. The experiment has verified the
effectiveness of the two components. Especially, LAGE-
Net w/o dist suffers a 3.6% drop in P@5 and 3.3% drop in
mAP when the distance embedding is not considered. It
indicates that the depth of a region to the border of the tis-
sue matters to the recognition of tumor types. Moreover,
we visualized the graph representation {zh} for the training
graphs (the retrieval database) in the 2-dimensional space
with t-SNE Maaten and Hinton (2008). Figures 6(a-b) il-
lustrates the averaged border distance for each graph. It
is obvious that, in Fig. 6b, the graphs sharing a similar
depth to the tissue border tends to cluster in the feature
space. That is one of the reasons that LAGE-Net is sig-
nificantly superior to LAGE-Net w/o dist. In contrast, the
clustering phenotype became less obvious when the dis-
tance embedding was removed from the encoding. It also
demonstrates the effectiveness of the proposed distance
embedding approach.

4.5. Comparison with the state-of-the-art
The proposed method is compared with 6 state-of-the-

art-methods proposed by Ma et al. (2018); Jimenez-del
Toro et al. (2017); Zheng et al. (2018b, 2019); Yan et al.
(2020); Dosovitskiy et al. (2021). These methods can be
categorized into two groups. The first group designs dis-
tance between the sets of features of two sub-regions to

Table 2: Results for the ablation study, where the metrics on the test set
are compared and the best values are shown in bold.

Networks P@5 P@20 mAP
LAGE-Net w/o dist & adj 0.561 0.553 0.626
LAGE-Net w/o dist 0.561 0.559 0.634
LAGE-Net w/o adj 0.571 0.563 0.652
LAGE-Net 0.587 0.583 0.667

measure their similarity for retrieval. This group includes
the following four methods:

• Jimenez-del Toro et al. (2017). The retrieval is
achieved based on both the WSIs and the text infor-
mation of the cases. In the experiment, only the part
for WSIs retrieval was implemented for the meta-
information of the datasets is not available. Specif-
ically, the distances between all pairs of patch fea-
tures across two sub-regions were calculated and the
mean value of the distances was used as the similar-
ity measurement.

• Zheng et al. (2018b). The patches in the sub-regions
are encoded into binary codes. When retrieving, a
set of proposal graphs is first retrieved through ta-
ble lookup operation based on patch codes. Then,
the distances between the query graph and the pro-
posal graphs are calculated under specific similarity
measurement and then the most similar graphs are
returned.

• Ma et al. (2018). The features for a sub-region are
quantified through a max-pooling operation. Then,
the obtained representation is converted into binary
codes based on latent Dirichlet allocation (LDA)
Blei et al. (2003) followed by supervised hashing.
Finally, the similarity between two graphs is com-
puted based on binary codes.

The second group trains deep learning models that take
sub-region features as input and outputs uniform repre-
sentations for the sub-regions. Then, the retrieval can
be completed by measuring the distance of these uniform
representations. We compare three typical methods from
this group. Note that the proposed method belongs to the
second group.
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(a) LAGE-Net w/o dist (b) LAGE-Net

(c) LAGE-Net w/o dist (d) LAGE-Net

Figure 6: The 2-dimensional visualization of the graph representation output by the last MLP (zh) for the Endometrium-2K retrieval database,
where a dot represents a graph, the color of the dots in (a) and (b) presents the averaged normalized distance for each graph to the border of the
tissue (φ j), and the color of the dots in (c) and (d) indicates the ratio of tumor occupation in the graph referring to the color bar on the right of the
figure. (Only a part of the database graphs are randomly selected and plotted for the purpose of clear display.)

• Zheng et al. (2019). Graphs are constructed to de-
scribe the sub-regions in the WSIs and fed into a
GCN with diffpool module Ying et al. (2018) to ex-
tract the graph representation. A hash layer is built
to the end of the GCN to convert the representation
into binary codes.

• Yan et al. (2020). The patch features are fed into
a two multi-layer bi-directional LSTM to exchange
the contextual information. Then the outputs of the
LSTM are merged by an average pooling layer for
similarity measurement.3

3The outputs of the LSTM are concatenated to generate the regional
representation in the original method. For that the number of the features

• Dosovitskiy et al. (2021). The vision transform
(ViT) model is applied to encode the graph and the
classification head of ViT is replaced with a hash
layer to generate the binary codes for retrieval.

For a fair comparison, the feature extractors (or
backbones) of the compared methods were the same
DenseNet-121 structure.

4.5.1. Comparison of retrieval precision
We conducted experiments for sub-regions in different

scales to evaluate the retrieval performance of the com-

for a sub-region in our experiment was not consistent, we used a average
pooling layer as a substitute for the concatenation.
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Table 3: Retrieval performance for the state-of-the-art methods on the Endometrium-2K dataset, where the results for different size allocations of
graphs (determined by n̄) are compared.

Methods n̄ = 30 n̄ = 50 n̄ = 70 n̄ = 90 Retrieval ComplexityP@5 / P@50 / mAP P@5 / P@50 / mAP P@5 / P@50 / mAP P@5 / P@50 / mAP

Jimenez-del Toro et al. (2017) 0.492 / 0.472 / 0.362 0.532 / 0.514 / 0.392 0.527 / 0.512 / 0.393 0.526 / 0.509 / 0.383 O(a2b)
Zheng et al. (2018b) 0.502 / 0.469 / 0.337 0.530 / 0.504 / 0.364 0.541 / 0.513 / 0.372 0.542 / 0.507 / 0.359 O(a2b)
Ma et al. (2018) 0.486 / 0.466 / 0.361 0.526 / 0.510 / 0.392 0.522 / 0.507 / 0.401 0.522 / 0.505 / 0.398 O(b)
Zheng et al. (2019) 0.563 / 0.558 / 0.594 0.581 / 0.561 / 0.618 0.573 / 0.584 / 0.633 0.603 / 0.599 / 0.646 O(b)
Yan et al. (2020) 0.568 / 0.567 / 0.594 0.574 / 0.564 / 0.597 0.540 / 0.569 / 0.595 0.589 / 0.589 / 0.593 O(b)
Dosovitskiy et al. (2021) 0.569 / 0.569 / 0.633 0.587 / 0.587 / 0.645 0.590 / 0.588 / 0.653 0.604 / 0.603 / 0.665 O(b)
Proposed 0.588 / 0.581 / 0.667 0.593 / 0.593 / 0.673 0.611 / 0.610 / 0.686 0.619 / 0.617 / 0.692 O(b)
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(a) The boxplots of node number distributions for graphs generated with different n̄, where the
nubmer of graphs is located under each box and the median number is marked by red line.
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Figure 7: Comparison of interpolated precision-recall curves of different retrieval methods on the Endometrium-2K dataset, where (a) provides the
distributions of number of graph nodes obtained with different n̄, and (b-e) present the interpolated precision-recall curves for different settings of
n̄, respectively.

pared method. Specifically, n̄ was set from 30 to 90 with
a step of 20 and the retrieval database and the number
of clusters (i.e. the target number of graphs ĝs for each
WSI is determined by equation ĝs = [ms/n̄]. The graphs
for each setting of n̄ were obtained based on Algorithm

1. The allocation of graph node numbers is visualized by
boxplots in Fig. 7. The experimental results are sum-
marized in Table 3. Correspondingly, the interpolated
precision-recall curves are illustrated in Fig. 7 (b-e).

Overall, the proposed method has achieved the best re-
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trieval performance in the quantitative evaluation. The re-
trieval methods in the first group, including Jimenez-del
Toro et al. (2017); Ma et al. (2018); Zheng et al. (2018b),
depend on the similarity measurement of patch features.
In these methods, the patch features were regarded as
equally informative in the mean average and max-pooling
operations. Both the interaction and the location informa-
tion of the patches were not considered in the sub-region
encoding process. These issues make it challenging to
identify the subtle patterns in different subtypes of tumors,
resulting in a gap in P@5 about 6.1% – 11.3% to the meth-
ods in the second group.

The methods Zheng et al. (2019) and Yan et al. (2020)
in the second group have modeled the internal adja-
cency information among sub-region patches. The for-
mer applied the adjacency matrix to connecting features
in 2D planar space and the latter constructed a sequence
to describe the 1D adjacency information. Then, the
graph neural networks and recurrent neural networks were
trained end-to-end based on the region labels to generate
uniform region representations. The end-to-end training
strategy delivered a high mean average precision in the
retrieval evaluation, as shown in Fig. 7(b-2). Meanwhile,
the precision for the top-returned was significantly im-
proved. However, the gap of mAP for Yan et al. (2020) to
the other methods in the second group gradually enlarges
as the size of the sub-region increases. The main reason is
that the adjacency information is modeled by RNN. The
communication of the patch features requires traversing
the entire sequence and therefore is weakened when the
sequence lengthens.

ViT Dosovitskiy et al. (2021) achieved comparable re-
trieval performance with our method. The superiority
benefits from the self-attention mechanism, which en-
ables a weighted communication among patch features
during the encoding process. The essential difference of
ViT from our method is that ViT utilizes trainable em-
bedding indexed by the tensor positions rather than the
border distances. However, the semantic for a tensor po-
sition is not fixed for the sub-region because the object in
the histopathology image is non-rigid and non-directional.
In this case, the trainable embedding could not find con-
sistent meaning for a certain position and therefore could
not be beneficial to the region encoding. In contrast, the
proposed LAGE-Net equips the explicit embedding that is
indexed by the distance of the patch to the tissue border.

This difference brings an improvement of 1.9% – 2.1% in
P@5 and 2.7% – 3.4% in mAP to our method.

4.5.2. Comparison of computational complexity
Efficiency is equally important for CBHIR system. In

the online retrieval stage, the computational complexity
mainly derives from the strategy of retrieval, which is rel-
evant to the pixel size of query region a, the scale of the
database b. The O notation for the compared methods are
given in Table 3.

In our method, the retrieval is completed by measur-
ing Hamming distances, which is irrelevant to the size
of the query region after the graph encoding. There-
fore, the complexity is O(b). The average time for query-
ing the database containing 51,808 graphs is 0.752 ms in
our experimental environment. Moreover, benefiting from
the binary encoding, the similarity measurement is time-
saving than those based on float-type high-dimensional
features (e.g., Jimenez-del Toro et al. (2017)). When the
order of magnitudes of WSI in the database increases, a
hash table can be pre-established. Then, the retrieval can
be easily achieved by a table-lookup operation, for which
the complexity of retrieval is potentially reduced to O(1).

4.6. Comparison on ACDC-LungHP dataset
The same evaluations were completed on the ACDC-

LungHP dataset. The hyper-parameters of the LAGE-Net
were tuned within the 120 training WSIs and were finally
determined as (Nb,Hh, de) = (4, 4, 512). Then the training
WSIs were encoded to construct the retrieval database.
The 30 testing WSIs were used to generate the query
graphs. The metrics of retrieval for different settings of n̄
are compared in Table 4. As for the dataset only provides
binary annotation, the training and evaluation were com-
pleted with binary labels, i.e., Tumor vs. Normal. The re-
sults have shown that all the compared methods achieved
applicable retrieval performance. The P@5 is better than
0.779, and the mAP is above 0.701 for different sizes of
query regions. Overall, the proposed retrieval framework
with the LAGE-Net achieved the best performance. The
experiment results are consistent with those obtained on
the Endometrial-2K dataset.

4.7. Visualization
To further validate the qualitative performance of the

proposed retrieval framework, we drew the graph struc-
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Table 4: Retrieval performance for the state-of-the-art methods on the ACDC-LungHP dataset, where the results for different size allocations of
graphs (determined by n̄) are compared.

Methods n̄ = 30 n̄ = 40 n̄ = 50 n̄ = 60 n̄ = 70 n̄ = 80 n̄ = 90
P@50 / mAP P@50 / mAP P@50 / mAP P@50 / mAP P@50 / mAP P@50 / mAP P@50 / mAP

Jimenez-del Toro et al. (2017) 0.779/ 0.708 0.777/ 0.709 0.772/ 0.709 0.779/ 0.708 0.765/ 0.705 0.786/ 0.707 0.782/ 0.707
Zheng et al. (2018b) 0.797/ 0.702 0.788/ 0.704 0.789/ 0.703 0.794/ 0.703 0.780/ 0.701 0.790/ 0.703 0.793/ 0.704
Ma et al. (2018) 0.783/ 0.715 0.783/ 0.719 0.779/ 0.719 0.788/ 0.718 0.783/ 0.717 0.789/ 0.718 0.786/ 0.718
Zheng et al. (2019) 0.801/ 0.862 0.811/ 0.865 0.840/ 0.867 0.831/ 0.872 0.797/ 0.857 0.845/ 0.884 0.858/ 0.881
Yan et al. (2020) 0.796/ 0.803 0.824/ 0.841 0.805/ 0.813 0.818/ 0.835 0.821/ 0.816 0.793/ 0.816 0.832/ 0.844
Dosovitskiy et al. (2021) 0.815/ 0.861 0.838/ 0.880 0.843/ 0.886 0.829/ 0.875 0.815/ 0.864 0.815/ 0.853 0.887/ 0.885
Proposed 0.819/ 0.869 0.860/ 0.899 0.863/ 0.901 0.848/ 0.885 0.820/ 0.868 0.833/ 0.866 0.884/ 0.897
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Figure 8: Visualization of the retrieval performance of the proposed method on the Endometrium-2K dataset, where the first column provides the
5 query regions in different type of lesions, the top-returned regions from the retrieval are ranked on the right, the irrelevant return regions (has
different labels with the query graph) are framed in red and the pixel size of the regions are located on the leftop of the images. Please check the
supplemental material for the high resolution version of the figure.

tures on the retrieved regions. The joint visualization of
WSI regions and graphs for the retrieval instances in the
Endometrial-2K dataset is provided in Fig. 8. It shows
that the relevant regions in various shape and size for the

query region are returned from the WSIs. It means that
the LAGE-Net has learned the representations to iden-
tify the WDEA, MDEA, LDEA, and SEIC in endometrial
histopathology.
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4.8. Discussion

We have tried to use a trainable distance embedding
indexed by ϕ̄ j as a substitute of the sine-cosine embed-
ding in the LAGE module but observed a slight decrease
in retrieval precision. Therefore, we finally applied this
constant embedding strategy.

The parameter n̄ affects the average size of the sub-
regions that can be retrieved by the system. n̄ is con-
sidered more of a Control value than a Hyper-parameter
to be optimized in this framework. In this case, the pro-
posed method was expected to be stable to n̄. Higher val-
ues of n̄ generate larger sub-regions. Larger regions con-
tain more contextual information, which helps the model
better identify the category of the sub-regions. That was
the main reason that larger n̄ value delivered better per-
formance. Because the purpose of this study was to de-
velop framework for fine-grained retrieval of sub-regions,
we limited the value of n̄ to 90 in the main experiment.
We also tested the retrieval framework for the settings
n̄ = 180 and n̄ = 360, and got a mAP of 0.703 and a
mAP of 0.711 in the Endometrium-2K dataset, respec-
tively, which were better than those obtained with n̄ ≤ 90.
However, the retrieval database were occupied by large
WSI regions. Simultaneously, the computational amount
of the self-attention module in LAGE-Net quadratically
grows as the enlarge of n̄, which increases difficulties to
the training and inference of LAGE-Net.

Generally, the source of a query region, i.e. the organ
a region comes from, is available in the digital pathology
system, and the retrieval is usually performed within the
WSIs from the same organ. Therefore, we did not mix the
histopathology WSIs from different organs to establish
the retrieval database. The proposed global location em-
beddings used to describe the location of the patches were
calculated in the same resolution and then scaled based
on the minimum and maximum distance values of the
database. It ensures the same embedding represents con-
sistent semantics. And when the retrieval system needs
to be generalized to retrieval database containing WSIs
from different organs or even in different resolutions, the
distances to the border should be properly scaled to make
sure the same embedding represents the equivalent actual
distance.

The models in the proposed framework were trained
based on supervised learning, which depends on the

manual annotations of pathologists. Theoretically, the
CNN and LAGE-Net are potentially trained based on
the methodology of unsupervised learning, especially the
contrast representation learning He et al. (2020); Grill
et al. (2020); Chen et al. (2021). Therefore, one of the
future works will focus on deploying the proposed frame-
work without pathologists’ manual annotations.

The encoding of regions in the proposed framework can
be divided into three separate stages: feature extraction,
graph construction, and graph encoding. Another future
work will focus on combining the three stages into an
integrated model that can be trained end-to-end and can
simultaneously predict the representative regions in the
WSI and encode these regions to establish the retrieval
database.

5. Conclusions

In this paper, we propose a novel histopathological im-
age retrieval framework for a large-scale WSI database
based on location-aware graphs and deep hashing tech-
niques. The sub-regions in the WSI are represented as
graphs within image features, internal connection infor-
mation and WSI location information. The graphs are
encoded by the designed LAGE-Net and archived with
binary codes for hash retrieval. The experimental re-
sults on an in-house endometrium dataset and a pub-
lic lung dataset have demonstrated that the proposed
method achieves state-of-the-art retrieval performance.
The LAGE-Net is scalable to size and shape variations of
query regions and can effectively retrieve relevant regions
that contain similar content and structure of the tissue. It
allows pathologists to create query regions by free-curves
on the digital pathology platform. Benefited from hash-
ing structure, the retrieval process is completed based on
hamming distance, which is very time-saving. One fu-
ture work is to build an integrated model for representa-
tive generation and indexing of whole slide images. An-
other future work will focus on developing unsupervised
and weakly supervised retrieval frameworks.
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