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Abstract. The research on content-based histopathological image re-
trieval (CBHIR) has become popular in recent years. CBHIR systems
provide auxiliary diagnosis information for pathologists by searching for
and returning regions that are contently similar to the region of interest
(ROI) from a pre-established database. To retrieve diagnostically rele-
vant regions from a database that consists of histopathological whole
slide images (WSIs) for query ROIs is challenging and yet significant for
clinical applications. In this paper, we propose a novel CBHIR framework
for regions retrieval from WSI-database based on hierarchical graph neu-
ral networks (GNNs). Compared to the present CBHIR framework, the
structural information of WSI is preserved by the proposed model, which
makes the retrieval framework more sensitive to regions that are simi-
lar in tissue distribution. Moreover, benefited from the hierarchical GNN
structures, the proposed framework is scalable for both the size and shape
variation of ROIs. It allows the pathologist defining the query region us-
ing free curves. Thirdly, the retrieval is achieved by binary codes and
hashing methods, which makes it very efficient and thereby adequate for
practical large-scale WSI-database. The proposed method is validated
on a lung cancer dataset and compared to the state-of-the-art methods.
The proposed method achieved precisions above 82.4% in the irregular
region retrieval task, which are superior to the state-of-the-art methods.
The average time of retrieval is 0.514 ms.

Keywords: Digital pathology · Histopathological image analysis · GNN
· CBIR · ACDC-LungHP.

1 Introduction

With the development of whole slide imaging techniques for digital pathology,
the computer aided cancer diagnosis methods based on histopathlogical image
analysis (HIA) have been widely studied. Content-based histopathological image
retrieval (CBHIR) is an emerging approach in this domain [1]. CBHIR searches
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a pre-established WSI database for the regions the pathologist concerned and
provides contently similar regions to the pathologists for reference. Compared
to the typical HIA methods based on image segmentation and classification [2],
CBHIR methods can provide more valuable information including the diagnosti-
cally similar regions, the meta-information, and the diagnosis reports of experts
stored along with the cases in the digital pathology system.

The present studies for CBHIR are generally on databases consist of im-
age blocks or patches in a fixed size. However, the practical histopathological
databases generally consist of digital whole slide images and the query regions
created by the pathologists are in different sizes and shapes. It is challenging to
efficiently retrieve regions from large-scale database containing WSIs in very high
pixel-resolutions and accurately return the similar cases the pathologists needed.
To meet the efficiency requirement for large-scale histopathological database re-
trieval, the binary encoding and hashing techniques have been successfully intro-
duced to accelerate the process of retrieval [1, 3]. To index WSIs for region-level
retrieval, the WSIs are commonly divided into small patches following the sliding
window paradigm. However, the diagnosis of cancer with tissue sections not only
depends on the local nuclei features but also the contextual information from a
broad region surrounding the nuclei. Several retrieval strategies have been de-
veloped to improve the scalability of the retrieval framework to size variation
of query regions [4–6]. These methods mainly applied feature vector quantifica-
tion approach, e.g. pooling operations, to embed the features of local patches,
which is a convenient to generate uniform representation for irregular tissue re-
gions. However, the adjacent relationship of different type of biopsy objects are
lost during the feature quantification, for which the structure similarity between
tumor regions are difficult to recognize in the procedure of retrieval.

In this paper, we propose a novel framework for histopathological image re-
trieval from large-scale WSI-database based on graph neural network (GNN) [8]
and hashing method. The proposed framework for CBHIR is illustrated in Fig. 1.
The WSIs are first divided into patches and converted into image features us-
ing a pre-trained convolutional neural networks (CNN). Then, graphs of tissue
are established based on spatial relationships and feature distances of patches.
Finally, the tissue-graphs are fed into the designed GNN-Hash model to obtain
the indexes for retrieval. The retrieval strategy proposed in this paper is scalable
for both the size and shape of query ROIs, which makes the proposed method
more applicable than the present methods.

The novelty and contribution of this paper to the problem is two-fold. Firstly,
we designed a novel graph-based WSI encoding approach based on GNN. Be-
sides the local features of tissue regions, the distribution of tissue is considered
and preserved in the process of WSI encoding. The accuracy and scalability of
the CBHIR framework has been improved. Secondly, we combined the GNN
structure with binary encoding and designed a GNN-Hash model. The GNN-
Hash model is trained end-to-end from graphs with variable number of nodes
to the binary-like codes, which makes the retrieval framework both structural-
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Fig. 1. The proposed CBHIR framework. In the offline stage, tissue graphs are first
constructed based on the spatial adjacency and feature similarity of patches. Then,
the graphs are embedded into binary codes and stored to the retrieval database. When
retrieving, the region the pathologist queries are converted into a binary code and then
the diagnostically relevant regions are retrieved and returned to pathologists.

preserving and time-saving. It determines that the proposed method is applicable
for practical large-scale WSI database.

The remainder of this paper is organized as follows. Section 2 introduces the
methodology of the proposed method. The experiment is presented in Section 3.
Section 4 summarizes the contributions.

2 Methods

Motivated by the development of graph information analysis (e.g. protein struc-
ture recognition and social network analysis), we propose to establish graph
structures to depict the adjacent relationship of local regions in WSIs. The de-
tails of the proposed methods are introduced in this section.

2.1 Tissue graph construction

A graph G can be represented as (A,X). A ∈ Rn×n is an adjacent matrix that
defines the connectivity of the n nodes in G, where aij = 1, aij ∈ A represents
the i-th and the j-th node in the graph are connected, and aij = 0, otherwise.
X ∈ Rn×d denotes the node feature matrix assuming each node is represented
as a d-dimensional column vector. In this paper, the sub-regions in the WSI are
described by graphs. The flowchart to construct graphs for a WSI is presented
in Fig. 2. First, the WSI is divided into non-overlapping patches using a sliding
window. Then, the patches are fed into a pre-trained convolutional neural net-
work (CNN) to extract patch features X. Considering that the tumor regions
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(a) (b) (c) (d)

Fig. 2. The flowchart of tissue graphs, where (a) is a digital WSI, (b) illustrates the
sub-regions, (c) shows the graphs established on sub-regions, and (d) jointly presents
a graph and its corresponding regions where the nodes are drawn on the centroids of
patches.

in a WSI varies in shape and size, we propose mosaicking the adjacent patches
into irregular sub-regions. Specifically, the agglomerative hierarchical clustering
algorithm [7] is employed to merge the patches based on the similarities between
patch features. To ensure the sub-regions are spatially connected, only the 4-
connected patches are allowed to be mosaicked. After the clustering, a set of
graphs {Gi} can be established (Fig. 2 (c)). The set {Gi} can cover the entire
content of the WSI and thereby can be used to index the WSI for retrieval.

2.2 GNN-Hash for graph encoding

To establish the retrieval indexes, the graphs are needed to be encoded into
vectors in equal dimensions. It is challenging to simultaneously embed the node
attributes and edge information into an uniform representation. Graph neural
network (GNN) [8] is an emerging techniques for graph information embedding,
which has been proven effective in histopathological image analysis [9]. Gener-
ally, GNNs can be represented following message-passing architecture H(k) =
M(A,H(k−1) : θ(k)), where H(k) ∈ Rn×d denotes the embeddings on the k-th
step of passing, M is the message propagation function [10–12] that depends on
the adjacent matrix A, the output of the previous step H(k−1), and the set of
trainable parameters θ(k). H(0) is the original attributes of the nodes, i.e., the
CNN features of patches X in our method. For simplicity, a GNN module with
multiple steps of embeddings can be represented as Z = GNN(A,X). Multiple
GNNs can be stacked to learn deep representations of graphs. Recently, Ying
et al. [13] proposed a differentiable graph pooling module (DiffPool), which en-
ables the hierarchical GNNs to be trained in end-to-end fashion. Specifically,
an additional GNN with a softmax output layer is designed to learn a matrix
S ∈ Rnl×nl+1 , which is used to assign the output representations of the l-th GNN
to nl+1 clusters. Then, the input X(l+1) and the adjacent matrix A(l+1) for the
next GNN are obtained by equations:

X(l+1) = S(l)TZ(l) ∈ Rnl+1×d

A(l+1) = S(l)TA(l)S(l) ∈ Rnl+1×nl+1
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In our method, the network is used to learn representations that are effective
for data retrieval. To ensure the framework is applicable to practical large-scale
pathological database, we modified the output of the hierarchical GNNs to gener-
ate a GNN-Hash structure. Specifically, a binary encoding layer is defined based
on the last graph embeddings Z(L) ∈ RN×d: Y = tanh(Z(L)W + b), where W
and b are the weights and bias for a linear projection. Y ∈ (−1, 1)N×dh is the
network outputs that can be simply converted into binary codes by equation
B = sign(Y) ∈ {−1, 1}N×dh , where N is the number of graphs and dh is the di-
mension of binary codes. The loss function for training the GNN-Hash is defined
as

J =
1

N
‖ 1

dh
YYT −C‖2F + λ‖WTW − I‖2F

where C ∈ {−1, 1}N×N is the pair-wise label matrix in which cij = 1 represents
the i-th and j-th tissue graphs are relevant and cij = −1 otherwise, and λ is a
weight coefficient. Finally, the proposed GNN-Hash structure is trained end-to-
end from the input graph G with CNN-features to the output Y.

2.3 Retrieval using binary codes

For each WSI in the retrieval database, a set of binary codes (B) that represent
the graphs in the WSI can be obtained using the trained model. When retrieving,
the region the pathologist queries is divided into patches and converted into
binary code using the same model. Then, the similarities between the query code
and those in the database are measure using Hamming distance. After ranking
the similarities, the top-ranked regions are retrieved and finally returned to the
pathologist.

3 Experiments

3.1 Experimental setting

The experiments were conducted on the ACDC-LungHP dataset5 [14], which
contains 150 WSIs within lung cancer regions annotated by pathologists. In
the evaluation, 30 WSIs were randomly selected as the testing dataset and the
remainders were used to train the retrieval models and establish the retrieval
database. To evaluate the scalability to size and shape variations of query ROIs,
the WSIs were divided into irregular sub-regions under 40× lenses using the
clustering approach introduced in section 2.1. Consequently, 2894 query regions
are generated and 16261 regions are created to establish the retrieval database.
The number of patches in each region ranges from 1 to 136 with a median number
of 37.

5 The dataset is accessible at https://acdc-lunghp.grand-challenge.org/. Since the an-
notations of testing part of the data set are not yet published, only the 150 training
WSIs of the data were used in this paper.
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Table 1. Comparison of retrieval performance with the state-of-the-art methods.

Methods P@50 P@200 MAP@50 MAP@200 Complexity Time

Shi et al. [3] (2018 ) 0.726* 0.723* 0.747* 0.733* O(n) 180 ms
Zheng et al. [16] (2018 ) 0.759 0.745 0.781 0.761 O(m logn) 86.1 ms
Ma et al. [4] (2018 ) 0.735 0.726 0.756 0.736 O(n) 0.507 ms
Jimenez et al. [6] (2017 ) 0.750 0.745 0.770 0.753 O(mn) 4.97 s

GNN-LR** 0.797 0.794 0.812 0.802 O(n) 1.20 ms
GNN-Hash 0.826 0.824 0.838 0.833 O(n) 0.514 ms

* This is the result for fixed-size-patch (224×224 pixels) retrieval task. Because there are 489,330
patches in the retrieval database, the average running time of this method is much longer than
other methods with O(n) complexity.

** This is the retrieval result based on the last representation (LR) of the designed hierarchical
GNNs structure but trained using the classification loss proposed in [13].

The DenseNet-121 structure [15] pre-trained for classification task within the
training WSIs was used as the feature extractor of patches. Two GNN modules
within three embedding steps and two DiffPool modules were stacked to generate
the GNN-Hash structure. The dimension of node embeddings was tuned from
60 to 120 with a step of 20 on the training set and determined as 100. The bit
number of the output binary code was set dh = 32. The proposed method was
implemented in python with pytorch. All the experiments were conducted on a
computer with an Intel Core i7-7700k CPU of 4.2 GHz and a GPU of Nvidia
GTX 1080Ti.

3.2 Results and discussion

The proposed method is compared with 4 state-of-the-art-methods [3, 4, 6, 16]
proposed for histological image retrieval. For fair comparison, the backbones
of the compared methods are the same DenseNet-121 structure used in our
model. In the evaluation, the graphs that contain more than 10% cancerous
pixels referring to the pathologists’ annotation are defined as cancerous graph,
and the remainders are defined as non-cancerous graph. The retrieval precision
(P@R) and the mean average precision (MAP@R) of the top R returned graphs
are used as the evaluation metrics. The experimental results are summarized in
Table 1.

Overall, the proposed method achieved the best retrieval performance. The
query regions and the database regions in [3] are limited to square patches in a
fixed size. Hence, we regarded the patches in graphs as the retrieval instances
and reported the patch-level retrieval performance for this method. Besides,
the other methods are scalable to the size variation of query regions. Ma et
al. [4] proposed quantifying the patch features in a region using max-pooling
operation and calculating the similarities between regions based on the pooled
representations. The percentage of patches of different tissue types is ignored by
the pooling operation, which has reduced the retrieval accuracy. Zheng et al. [16]
and Jimenez et al. [6] proposed measuring the similarity of two regions by an
ensemble of feature distances of all the patch pairs across the two regions. The
local similarities between the regions are considered in the two methods, which
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Fig. 3. Visualization of the retrieval performance of the proposed method, where the
first column provides 4 query regions, the top-returned regions are ranked on the right,
the relevant return regions (has the same label with the query region) are framed in
green and the irrelevant regions are in red. The locations of the graph are meanwhile
displayed. A high-quality copy of this picture is submitted as supplemental material.

has improved the MAP@200 to 0.761 and 0.753, respectively. The main drawback
of the two methods is that the adjacent relationship of tissue objects cannot be
effectively described, which has severely affected the performance of retrieval.
In contrast, the proposed method constructed graphs within tissue regions. The
information of tissue allocation has been sufficiently described and well preserved
via the hierarchical embeddings of the proposed GNN-Hash model. It contributes
to a significant improvement of MAP@200 from 0.761 to 0.833, compared to that
obtained by Zheng et al. [16]. The retrieval results obtained by the proposed
framework are visualized in Fig. 3. It presents that the proposed model can
adapt to the variation of size and shape of query regions and the diagnostically
relevant regions to the query regions are successfully retrieved.

The efficiency is also important for CBHIR system. The computational com-
plexity (by O notation) relevant to the pixel size of query region m and the
scale of the database n for the compared methods are given in Table 1. Corre-
spondingly, the average time consumption for retrieval are also compared (the
feature extraction time is not involved). In our method, the computation for re-
trieval is irrelevant to the size of query region after the encoding and thereby the
complexity is O(n). Moreover, benefiting from the binary encoding, the similar-
ity measurement is time-saving than those (e.g. GNN-LR) based on float-type
high-dimensional features. When the order of magnitudes of WSI in database
increases and the content in the database is abundant, a hashing table will be
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pre-established. Then, the retrieval can be easily achieved by a table-lookup
operation, for which the complexity of retrieval can be further reduced to O(1).

4 Conclusion

In this paper, we proposed a novel histopathological image retrieval framework
for large-scale database consisting of WSIs. The instances in the database are
defined based on graphs and are converted into binary codes by the designed
GNN-Hash model. The experimental results have demonstrated that the pro-
posed model achieves the state-of-the-art retrieval performance and is scalable
to size and shape variations of query regions and can effectively retrieve relevant
regions that contain similar content and structure of tissue. It allows patholo-
gists to create query regions by free-curves on the digital pathology platform.
Benefiting from hashing structure, the retrieval process is completed based on
hamming distance, which is very time-saving. Overall, the proposed method is
effective, efficient and practical for large-scale WSI database retrieval.
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6. Jimenez-del-Toro O., Otálora S., Atzori M., et al.: Deep multimodal casebased re-
trieval for large histopathology datasets. International Workshop on Patch-based
Techniques in Medical Imaging, pp. 149–157 (2017)

7. Day W H E, Edelsbrunner H.: Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of Classification 1(1): 7–24 (1984)



GNN-Hash for histopathological WSI retrieval 9

8. Wu Z., Pan S., Chen F., et al.: A comprehensive survey on graph neural networks.
arXiv:1901.00596 (2019)

9. Li R., Yao J., Zhu X., et al.: Graph CNN for Survival Analysis on Whole Slide
Pathological Images. In: Proceedings of International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp. 174–182. Springer,
Heidelberg (2018)

10. Gilmer J., Schoenholz S. S., Riley P. F., et al.: Neural message passing for quan-
tum chemistry. In: Proceedings of the 34th International Conference on Machine
Learning (ICML), pp. 1263-1272 (2017)

11. Hamilton W., Ying Z., Leskovec J.: Inductive representation learning on large
graphs. In: Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), pp. 1024–1034 (2017)

12. Kipf T. N., Welling M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of International Conference on Learning Representations
(ICLR), 2017

13. Ying Z., You J., Morris C., et al. Hierarchical graph representation learning with
differentiable pooling. In: Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), pp. 4805–4815 (2018)

14. Li Z., Hu Z., et al.: Computer-aided diagnosis of lung carcinoma using deep learning
- a pilot study, arXiv:1803.05471v1 (2018)

15. Huang G., Liu Z., Van Der Maaten L., et al.: Densely connected convolutional
networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp. 4700–4708 (2017)

16. Zheng Y., Jiang Z., Zhang H., et al.: Size-scalable content-based histopathological
image retrieval from database that consists of WSIs. IEEE Journal of Biomedical
and Health Informatics 22(4), 1278–1287 (2018)


