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Kernel Attention Transformer for Histopathology
Whole Slide Image Analysis and Assistant Cancer

Diagnosis
Yushan Zheng, Jun Li, Jun Shi, Fengying Xie, Jianguo Huai, Ming Cao, Zhiguo Jiang

Abstract

Transformer has been widely used in histopathology whole slide image analysis. However, the design of token-wise self-
attention and positional embedding strategy in the common Transformer limits its effectiveness and efficiency when applied to
gigapixel histopathology images. In this paper, we propose a novel kernel attention Transformer (KAT) for histopathology WSI
analysis and assistant cancer diagnosis. The information transmission in KAT is achieved by cross-attention between the patch
features and a set of kernels related to the spatial relationship of the patches on the whole slide images. Compared to the common
Transformer structure, KAT can extract the hierarchical context information of the local regions of the WSI and provide diversified
diagnosis information. Meanwhile, the kernel-based cross-attention paradigm significantly reduces the computational amount. The
proposed method was evaluated on three large-scale datasets and was compared with 8 state-of-the-art methods. The experimental
results have demonstrated the proposed KAT is effective and efficient in the task of histopathology WSI analysis and is superior
to the state-of-the-art methods.
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I. INTRODUCTION

Histopathology whole slide image (WSI) analysis based on image processing and deep learning has proven effective in
building computer-aided applications for cancer screening [1]–[3], tumor grading [4]–[6], prognosis analysis [7]–[9], gene
mutant prediction [10], [11], etc.

Recently, Vision Transformer (ViT) [12], [13], the extensively studied model in natural scene image recognition and object
detection, was introduced to this problem [14]–[16]. The WSI analysis can be achieved by taking the WSI local features as
token inputs. Theoretically, the self-attention mechanism of Transformer enables it to detect the useful spatial and spectral
relations of the local features on the images. The recent studies [17]–[19] have proven that Transformer-based models can
further improve the WSI classification accuracy when compared to the previous methods. Nevertheless, the calculation flowchart
of self-attention, the main operation in Transformer, occurs notable problems when applied to the WSIs containing gigapixels.

The positional embedding in ViT is designed for the natural sense image dataset, e.g., ImageNet [20], where all the images
are in the same size, e.g. 224× 224. The image patches are arranged in a consistent sequence for the ViT tokens. It ensures
a token indicates consistent positional information throughout the training and inference stages. However, the size and shape
of histopathology WSIs are not fixed, and the tissue region varies a lot in different WSI. It makes the patches from different
WSIs but for a certain token are positional inconsistent or even positional conflicting, especially under the setting that only
the foreground features are extracted to fill the tokens. This makes ViT ambiguous to describe the structural information for
WSIs and thereby affects its performance for fine-grained WSI classification tasks that rely on tissue distribution. Secondly,
the self-attention operation permits the equivalent conjunction of tokens in every Transformer block. However, the features for
WSI diagnosis are expected to be extracted hierarchically from the local level to the global level. Moreover, the computational
complexity of the self-attention operation is O(n2) assuming that n denotes the number of tokens. The inference of the
Transformer becomes rather inefficient when facing a WSI that generates thousands of tokens. These problems have limited
the performance and efficiency of the Transformer-based method for WSI analysis.

In this paper, we propose a novel model named kernel attention Transformer (KAT) for whole slide image analysis and a
flowchart for assistant cancer diagnosis. The framework is illustrated in Fig. 1. Compared to the common Transformer structure,
the proposed KAT can describe hierarchical context information of the local regions of the WSI and therefore is more effective
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Fig. 1. The proposed histopathology WSI analysis framework, where (a) is the original WSI, (b-d) illustrates the process of anchor definition and anchor-related
mask generation, (e-f) is the feature extraction flowchart, (g) represents a set of trainable embedding that serves as the kernels, (h) is a trainable vector used
for information aggregation and WSI classification, and (i-l) shows the outputs of the framework that consists of the sub-typing probability, the hot map for
the region of interest indication, and the most attentive region with its similar regions/cases from the database. The kernel attention Transformer (KAT) is the
core of the framework, which is detailed in section III and Fig. 2.

in histopathology WSI description and analysis. Meanwhile, the kernel-based cross-attention paradigm maintains a near-linear
computational complexity to the size of the WSI. The proposed method was evaluated on a gastric dataset with 2040 WSIs,
an endometrial dataset with 2560 WSIs and a lung dataset with 3064 WSIs, and was compared with 8 state-of-the-art methods
[12], [14], [18], [21]–[23]. The experimental results have demonstrated the proposed KAT is effective and efficient in the task
of histopathology WSI classification and is superior to the state-of-the-art methods.

The contribution of the paper can be summarized in three aspects.
(1) A novel model named kernel attention Transformer (KAT) is proposed. Compared to ViT [12], the token-wise self-attention

is replaced by cross-attention between the tokens and a set of kernels to achieve information transmission. The experiments
have demonstrated that the kernel-based cross-attention contributes to a competitive performance for WSI classification and
meanwhile significantly reduces the computational complexity of ViT in both the training and the inference stages.

(2) An anchor-based token masking approach is designed for KAT to describe the structural information of histopathology
whole slide image. Specifically, a set of anchors are defined based on the spatial positions of the patches and then bound to
the kernels in KAT. Then, hierarchical anchor-based soft masks are created to guide the cross-attention to perceive multi-scale
features of WSI. It helps the KAT to learn hierarchical representations from the local to the global scale of the WSI, thus
delivering better WSI classification performance.

(3) A kernel contrastive representation learning (KCL) strategy is proposed to improve the effectiveness and interpretability
of KAT for WSI analysis. Based on KCL, the kernel tokens can extract more discriminative regional representations, which
are promising to build informative assistant WSI diagnosis systems.

The remainder of this paper is organized as follows. Section II reviews the related works. Section III introduces the
methodology of the proposed method. The experiment and discussion are presented in Section IV and Section V, respectively.

II. RELATED WORKS

The gigapixel property of histopathology WSI makes it a challenging task to build end-to-end classification models under
the limitation of the current computer hardware [24]. Therefore, the present methods generally separate the task into several
stages.

One of the popular methods for WSI analysis is based on patch classification [25]–[27]. For example, Wang et al. [27] trained
a patch-level CNN based on the annotation of the WSI to select the discriminative patches and then built a recalibrated multi-
instance deep learning (RMDL) model based on these patches to achieve the WSI classification. These methods generally
rely on the fine-grained annotations of pathologists. It limits the application to the clinical situation where the WSIs lack
annotations.

To achieve the annotation-free WSI classification, Divide et al. [28] proposed dividing the WSI into patches and compressing
the WSIs into feature cubes by training a patch-level convolution neural network (CNN) [29] and then using a second CNN to
predict the label of the WSI from these feature cubes. Recently, Xiang et al. [30] proposed a dual stream convolution neural
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network that took both the WSI thumbnail images and transformed patch embeddings as input. The multi-level modeling
strategy delivers greater performance than the previous method. These methods don’t rely on annotations and have proven
effective for WSI classification. However, the restriction of the input size of the second CNN makes the padded feature cubes
usually involve a large area of background data, which leads to a substantial waste of computation in both the training and
application stage.

More typically, multiple instance learning (MIL) is introduced into this domain and has become of the most popular techniques
for whole slide image classification [21], [31]–[40]. Ilse et al. [32] proposed an attention-based MIL model, where the CNN
for patch feature extraction and the attention module for feature aggregation can be trained end-to-end. Then, Campanella et
al. [34] proposed training a patch feature extractor based on WSI labels, i.e., the pseudo levels, within the tok-K confident
patches from the WSIs and then trained a recurrent neural network (RNN) [41], [42] to achieve the WSI classification based
on the tok-K patches. The performance of these methods depends on the CNN trained within the dataset. And, the top-K
strategy is hard to be applied to the fine-grained WSI subtyping tasks. More recently, the embedding-based MIL methods are
widely studied [21], [37], [40]. Typically, CLAM [21] utilized CNN pre-trained on the ImageNet dataset [20] as the patch
feature extractor and achieved multi-type WSI classification by the designed multi-class attention module. The major weakness
of the MIL-based methods is that the local regions are generally regarded as individual instances. The structural and spatial
allocation information of these instances is rarely considered, which causes significant precision degradation when facing the
WSI classification tasks relying on the tissue structural patterns.

To describe the relationship of the sub-regions, graph-based modeling methods are proposed for WSI analysis [18], [23],
[36], [43]–[45]. In [43] and [44], graphs are constructed for WSIs based on the patch similarities in the feature spaces. The
studies [18], [23] built graphs based on the adjacency of the patches on the WSI, for which the spatial relationship of the
patches is properly described. Based on these graphs, the WSI analysis can be realized by graph neural networks (GCNs).

Most recently, Transformer structures [12], [22], [46] were introduced for WSI analysis [14], [19], [47]–[50]. Transformer
enables more extensive communication of the patches compared to RNN, MIL, and GCN-based models. This advantage decides
it is more promising for fine-grained WSI analysis. However, the self-attention operation makes Transformer expensive in both
computational amount and memory cost, which is a problem that the present methods are trying to solve. For example, Huang
et al. [47] utilized random sampling to reduce the number of patches fed into the Transformer. Li et al. [19] applied the
deformable Transformer [51] to reduce the computational complexity of the self-attention operation. Typically, TransMIL [14]
equipped the linear-approximated self-attention model, Nyströmformer [22], to maintain a low memory cost. Furthermore,
TransMIL enhanced the spatial description ability with a pyramid position encoding generator (PPEG) module. But, its design
still assumes that tissue is a fixed-size square region, for which the positional inconsistent and conflicting problems were not
yet properly tackled.

This paper tries to solve the inherent problem of ViT in the aspect of structural information preservation and computational
efficiency when applied to WSI analysis. A part of this work has been presented in the conference paper [52].

III. METHOD

A. Overview

The proposed histopathology WSI analysis framework is shown in Fig. 1. The foreground regions of a WSI are first divided
into patches. Meanwhile, a set of anchors and anchor-related soft masks are generated based on the shape and size of the tissue,
as shown in Fig. 1c-d. Then, the patch features along with a set of trainable kernels that bound with the anchors are fed into
the proposed KAT model for analysis. The information flowing in KAT is achieved by cross-attention operation between the
kernels and patches, which includes the procedures of information gathering (I.B), information broadcast (I.B), and information
aggregation (I.A). The KAT model outputs the class prediction and the attentive regions for the WSI, as shown in Fig. 1i-j.
Furthermore, similar WSI regions from the diagnosed database can be retrieved for diagnosis reference, as shown in Fig. 1l.

B. Pre-processing and Data preparation

1) Local feature extraction: The units of WSI analysis in our framework are image patches that are obtained following the
window sliding paradigm, as shown in Fig. 1e. The patch features are extracted using a convolution neural network (CNN).
The blank regions of the WSI are less informative for diagnosis and therefore were removed beforehand by a threshold on the
intensity [53]. The features within the foreground of the tissue mask were rearranged to be a feature matrix (as shown in Fig.
1f) which is formulated as F ∈ Rnp×df , where np denotes the number of the foreground patches on the WSI, df denotes the
dimension of the feature, and fi is the i-th row of the F that represents the feature of the i-th patch.

2) Anchor definition: In our method, the structure information of the WSI is handled by a set of anchors. The anchors
are designed to be uniformly located in the foreground of the WSI, i.e. the tissue region. This is achieved by clustering the
spatial coordinates of the foreground patches. Specifically, we define p(fi) = (mi, ni)

T to represent the patch-wise position
of fi on the WSI, and collect all the feature positions within the WSI as set {p(fi)}

np

i=1. These positions are clustered into
K centers based on the K-means algorithm. Then, the nearest position to each center is recognized as an anchor position,
which is represented as ck = (mk, nk)

T, k = 1, 2...,K. To make the proposed method scalable to the size of WSI, we assign
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Fig. 2. The structure of kernel attention network (KAT), where Att denotes a scaling operation followed by a softmax operation, F, K(0), and c(0) denotes
the input of the feature tokens, kernel tokens, and classification token, respectively, M(n) is the anchor mask for the n-th stage, and A

(n)
k←x and A

(n)
c←k are

the attention weights used for generating visualization outputs.

an adaptive number of anchors for each WSI by defining K = [np/n̄k], where n̄k denotes the average number of patches
processed per kernel. n̄k is a hyper-parameter of KAT, which will be discussed in the experimental sections.

3) Soft-mask generation: Afterward, we propose using the spatial distances between the anchors and the patches to describe
the structure of the tissue. Specifically, a soft mask is generated for each anchor by calculating the weight between the k-th
anchor and the i-th patch with the equation

mki(δ) = exp(−∥p(fi)− ck∥22/2δ2), (1)

where δ controls the scale of the Gaussian-like mask. By computing the weights between all the features and anchors, we
obtain the mask matrix M(δ) ∈ (0, 1)K×np , where each row defines the soft mask for an anchor, and each column records
the weights of a patch to the anchors. Moreover, we define multi-scale masks by adjusting δ. Finally, the hierarchical masks
are represented by the collection

M = {M(δn)}Nn=1, (2)

with N representing the number of scales. Here, we empirically set δ1 =
√
n̄k to make the intersection of the (-δ1, +δ1) area

of all the anchors cover all the patches, and set δn =
√
n̄k · 2n−1 to make the receptive field of the anchor gradually expand

with the deepening of the network. The visualization of the anchors and soft masks can be found in Fig. 8.

C. Kernel attention Transformer (KAT)
1) Network structure: The input of KAT for a WSI includes the feature matrix F and the anchor masks M. As shown in Fig.

2, the outline structure of KAT follows ViT [12], which is constructed by stacking N repeated blocks. Each block is composed
of modules in the sequence of layer normalization (LN), kernel attention (KA), layer normalization, and feed-forward (FF)
module. The feed-forward module is a two-layer full-connected neural network that has the same structure as that in ViT.
The basic inputs of the n-th KA module include the patch token representations X(n) ∈ Rnp×de and the classification token
c(n) ∈ Rde after layer normalization. Besides, A set of trainable tokens K(n) ∈ RK×de (as shown in Fig. 1h) named kernels
are defined and bound with the anchors and their soft-masks M(n). The inference process of a block can be briefly formulated
as

X′(n+1),K′(n+1), c′(n+1)

= KA
(
LN(X(n),K(n), c(n))

)
,

X(n+1),K(n+1), c(n+1)

= FF
(
LN(X′(n+1),K′(n+1), c′(n+1))

) (3)
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Additionally, the KA module and FF module are with residual connections. The KA module is the major difference between
KAT and the common Transformer, which is detailed in this section.

2) Kernel attention (KA) module: Instead of doing self-attention among the patch tokens, we propose performing cross-
attention between the kernels and the patch tokens. Namely, the information transmission in the KA module is achieved by a
bi-direction message passing flow. One direction is the information gathering (I.G) flow, which is defined by the equation

A
(n)
k←x =σ

(
K̄(n)W(n)

q · (X̄(n)W
(n)
k )T/τ

)
,

K′(n+1) =(A
(n)
k←x ⊙M(n)) · X̄(n)W(n)

v ,
(4)

where A
(n)
k←x ∈ RK×np is the weighting matrix that indicates the attention weights of each kernel to all the patches, K̄(n)

and X̄(n) are the normalized tensors of K(n) and X(n) after the LN layer, W(n)
k , W(n)

q , W(n)
v ∈ Rde×dh denote the trainable

weights for the linear projections from the embedding dimension de to the head dimension dh for Key, Query, and Value
entries, respectively, σ denotes the row-wise softmax function, τ =

√
dh is the scaling factor, and K′(n+1) is the output of I.G

flow. Particularly, M(n) = M(δn) ∈ M denotes the anchor-related masks defined by Eq. (2). Based on the Hadamard product
of M(n) and A

(n)
k←x, the attention of each kernel is restricted to its nearby region.

Another direction is the information broadcast (I.B) flow. The calculation of I.B is symmetric with I.G that is defined by
the equation

A
(n)
x←k =σ

(
X̄(n)W(n)

q · ¯(K
(n)

W
(n)
k )T/τ

)
,

X′(n+1) =(A
(n)
x←k ⊙MT(n)) · K̄(n)W(n)

v ,
(5)

where A
(n)
x←k ∈ Rnp×K is a weighting matrix that indicates the weights of each patch receiving the information of all the

kernels and X′(n+1) is the output of I.B flow.
Through I.G flow, the local information described by the patch representations is reported to their nearby kernels for

information gathering. Then, through the I.B flow, the regional information summarized by the kernels is broadcast back to
the patches. Based on the bi-directional message passing flow, communication among the patch representations of the WSI
can be accomplished. The soft masks defined by M(n) for each stage of the KA module expand as n enlarges, and thereby
the commutation range between the kernels and the patches gradually increases along with the inference process. It allows
the kernels to get hierarchical structural information from the micro to macro view of tumor tissue. This will benefit the
fine-grained recognition of the tissues, especially in the sub-typing tasks depending on the spatial distribution of the tissue.

In each KA module, a classification token is used for summing up the information from all the kernels, which is named as
information aggregation (I.A) flow and formulated as

A
(n)
c←k =σ

(
c̄(n)W(n)

q · ¯(K
(n)

W
(n)
k )T/τ

)
,

c′(n+1) =A
(n)
c←k · K̄(n)W(n)

v ,
(6)

where c′(n+1) is the output of the I.A flow.
Here, we provide a computational complexity analysis for the KA module. According to Eq. (4), the computation for A(n)

k←x

costs O(Kdedh + npdedh + Knpdh) and the computation for K′(n+1) costs O(Knp + npdedh + Knpdh). Then, the total
computation for Eq. (4) costs O(Kdedh + npdedh +Knpdh +Knp). Because de and dh are constant dimension parameters
for the network, the computation complexity evolves to O(K + np +Knp) = O(Knp). Similarly, we can also derive that the
computational complexity for Eq. (5) is O(Knp) and is O(K) for Eq. (6). Therefore, the computational complexity for KA
is O(Knp +K) = O(Knp). If we set the number of kernels K as constant, the computational complexity for KA is O(np),
i.e., scales linearly w.r.t. the number of patches for a WSI.

Finally, we extended it to the multi-head KA module following the paradigm of Transformer [12] to further improve the
performance of the KA module.

D. Objective and optimization

1) WSI classification objective: A fully connected layer is built on the output of the cls token for WSI classification, which
is formulated as zc = Ffc(c

(N)), where zc ∈ Rnc is the output of the classification token with nc denoting the number of
neurons of the layer, i.e. the type number of the WSIs. The objective function for WSI classification is the cross-entropy
between zc and the label of the WSI, which is formulated as

Lce = −yT log(σ(zc)), (7)

where y denotes the one-hot label of the WSI.
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Fig. 3. Data flow for training KAT, based on the composite loss function for WSI classification and contrastive kernel representation learning. For the details
please refer to section III-D

2) Kernel contrastive representation learning (KCL): We propose building a contrastive representation learning module for
the the kernels, to enhance the discrimination of the kernel representations. As shown in Fig. 3, two augmentations of the
feature matrix F for a WSI are generated based on patch-wise Monte Carlo dropout with a probability of pdrop and are denoted
as F′1 and F′2. Correspondingly, a contrastive representation learning structure is built to the kernel outputs of KAT referring
to BYOL [54]. F′1 and F′2 are fed into the KAT of the online branch and the target branch, respectively, based on which
the kernel representations of K(n)

o and K
(n)
t are obtained. The K

(n)
o for the online branch is sequentially fed into a projector

Fproj
o and a predictor Fpred

o that are composed of multilayer perceptrons (MLPs) following [54]. This process is formulated
as

Z(n)
o = Fproj

o (K(n)
o ),

P(n) = Fpred
o (Z(n)

o ),
(8)

and K
(n)
t for the target branch is fed into a projector Fproj

t that has the same structure with Fproj
o to obtain

Z
(n)
t = Fproj

t (K
(n)
t ), (9)

where P(n),Z
(n)
t ∈ RK×dp with dp denote the dimension of the projector and predictor output, respectively. Note that the

number of kernels is determined based on the original WSI patches and kept fixed during the Monte Carlo dropout. Therefore,
the anchors related to the rows in P(n) and Z

(n)
t maintain aligned. Based on this, we define the contrastive objective function

as

Lcl =
N∑

n=1

∥P̄(n) − Z̄
(n)
t ∥22, (10)

where P̄(n) and Z̄
(n)
t represent the row-wise-l2-normalized P(n) and Z

(n)
t , respectively.

3) Optimization: Finally, the entire KAT is trained end-to-end based on the composite objective function

L = Lce + λLcl (11)

with λ controls the composite weight. The parameters of the modules in the online target are optimized by the gradient descent
algorithm, and the modules in the target branch are updated by the exponential moving average (EMA) mechanism [54].
AdamW optimizer is employed to handle the mini-batch-based back-propagation procedure. The inputs of the kernel tokens
and the classification token, i.e. K(0) and c(0), are randomly initialed and kept trainable in the training stage. To ensure all
the kernels have consistent action for the same allocation of nearby features, we make all the kernels share the same set of
trainable parameters.

E. WSI analysis with KAT

As shown in Fig. 1i, the basic output of the KAT is σ(zc), i.e., the probability of the WSI for each type. Moreover, we can
find which kernel contributes the most to the decision by checking A

(n)
c←k, and correspondingly resolve the attention map of

the kernels by projecting the values A
(n)
k←x on the WSI. Afterward, the representative region, i.e. the most attentive regions on

the attention map can be highlighted and fed back to the doctors.
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TABLE I
THE WSI DISTRIBUTION OF THE EXPERIMENTAL DATASETS.

Gastric-2K Normal LGIN HGIN A. MA SRCC
Train 563 354 120 259 74 88
Test 227 148 58 117 14 18

Endometrial-2K Normal WDEA MDEA LDEA SEIC
Train 413 557 590 187 111
Test 162 261 234 91 44

TCGA-Lung-3K Normal LUAD LUSC
Train 395 863 886
Test 158 394 368

TABLE II
MEAN ± STANDARD DEVIATION OF THE EVALUATION RESULTS ON THE TEST SUBSET FOR THE ABLATION STUDY.

Method Macro-AUC Weighted-AUC Accuracy Macro-F1 Weighted-F1

KAT w/o kernels (ViT) 0.773 ± 0.019 0.940 ± 0.009 0.726 ± 0.056 0.415 ± 0.056 0.732 ± 0.047

KAT w/o softmask 0.816 ± 0.013 0.953 ± 0.003 0.783 ± 0.015 0.488 ± 0.025 0.791 ± 0.014
KAT w/ δn =

√
n̄k · 20 0.843 ± 0.007 0.964 ± 0.004 0.802 ± 0.021 0.506 ± 0.010 0.812 ± 0.017

KAT w/ δn =
√

n̄k · 2N−1 0.824 ± 0.033 0.963 ± 0.003 0.788 ± 0.042 0.473 ± 0.015 0.788 ± 0.038
KAT w/ δn =

√
n̄k · 2N−n−1 0.826 ± 0.020 0.965 ± 0.004 0.809 ± 0.017 0.502 ± 0.029 0.818 ± 0.012

KAT w/o KCL 0.847 ± 0.012 0.966 ± 0.002 0.812 ± 0.016 0.513 ± 0.021 0.823 ± 0.013
KAT 0.857 ± 0.007 0.966 ± 0.001 0.823 ± 0.011 0.525 ± 0.015 0.832 ± 0.011

IV. EXPERIMENT AND RESULT

A. Experimental settings

The proposed method was evaluated on three large-scale WSI datasets, which are briefly introduced below.
• Gastric-2K contains 2040 WSIs of gastric biopsy histopathology collected from 2040 patients by No.1 people’s hospital

of Wuhu, China. These WSIs are categorized into 6 subtypes of gastric pathology, including Low-grade intraepithelial
neoplasia (LGIN), High-grade intraepithelial neoplasia (HGIN), and Adenocarcinoma (A.), Mucinous adenocarcinoma
(MA), Signet-ring cell carcinoma (SRCC), and non-tumor tissue (Normal).

• Endometrial-2K contains 2650 WSIs of endometrium histopathology collected from 2650 patients by Tianjin Fifth Central
Hospital of China. These WSIs are categorized into 5 subtypes of endometrial pathology, including Well/Moderately/Low-
differentiated endometrioid adenocarcinoma (WDEA/MDEA/LDEA), Serous endometrial intraepithelial carcinoma (SEIC),
and cancer-free tissue (Normal).

• TCGA-Lung-3K contains 3064 WSIs of lung histopathology collected from the cancer genome atlas (TCGA) program of
NCI. These WSIs are categorized into 3 subtypes including lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), and cancer-free tissue (Normal). This dataset is publicly available. 1

In each dataset, the WSIs were randomly separated into train and test subsets by the proportion of 7:3. The distribution
of WSIs in the three datasets is given in Table I. Five-fold cross-validation was conducted within the training set where the
validation part in each fold was used to perform early stops and hyper-parameter selection. Then, the mean and standard
deviation of the results on the test set obtained by these early stopped models were used for ablation study and quantitative
comparison with other methods.

The structure of CNN was Resnet-50 [55] because of its comprehensive performance. An increasing number of methods
[16], [37], [47], [56]–[58] introduced the contrastive representation learning to train the CNN and have achieved a significantly
better WSI classification performance than the previous methods. Following these methods, we trained the Resnet-50 within
the training data using the contrastive representation learning framework proposed in BYOL [54].

The window sliding and CNN feature extraction were performed on the WSIs under 20× lenses (the resolution is 0.48µm/pixel).
The window size, as well as the image patch size, was set 224× 224 and the feature dimension df = 2048 to fit the Resnet50
structure.

The average accuracy, macro-F1 score, weighted-F1 score, the macro area under the receiver operating characteristic curve
(macro-AUC), and weighted-AUC are calculated for evaluating the sub-typing tasks2.

The proposed method was implemented in Python with torch, and run on a computer cluster with 10 Xeon 2.66GHz CPUs
and 10 GPUs of Nvidia Geforce 2080Ti. For more details please refer to the source code at https://github.com/zhengyushan/kat.

1The list of these WSIs is available at https://github.com/Zhengyushan/kat/tree/main/dataset/tcga lung
2These metrics were calculated using sklearn library

https://github.com/zhengyushan/kat
https://github.com/Zhengyushan/kat/tree/main/dataset/tcga_lung
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(a) Number of blocks N (b) Patches per kernel n̄k (c) The projector dim dp

(d) Aug probability pdrop (e) The loss weight λ

Fig. 4. Performance curves of KAT on the validation data in the five-fold cross-validation as functions of the hyper-parameters, where the red bar indicates
the standard deviation of the macro AUCs.

B. Hyper-parameter verification

We first conducted experiments to verify the design of the proposed KAT model. There are five hyper-parameters, (N, n̄k, dp, pdrop, λ)
that decide the capacity of KAT. We discuss the effect of these hyper-parameters on the Gastric-2K dataset. The mean and
standard deviation of macro-AUCs for the validation data in the cross-validation as functions of these hyper-parameters are
plotted in Fig. 4. Note that the other hyper-parameters were set fixed when one hyper-parameter was being tuned.

1) The number of stacked blocks: N is positively correlated with the computational amount of KAT and also controls the
scale upper bound of the anchor-related soft masks. N was tuned in the range of [2,12] with a step of 2. The curve in Fig.
4a shows that the classification performance generally increases as N enlarges and then keeps stable when N > 4. Therefore,
we set N = 8 for its best classification performance and relatively low computational amount.

2) Average patch number per kernel: n̄k decides the basic range of an anchor gathering and broadcasting information. A
larger n̄k helps the model quickly get contextual information on the WSI but also weakens its perception of micro tissue
structures. Fig. 4b indicates that n̄k = 100 is a compromise for that it achieves the best classification performance. Hence, We
set n̄k = 100 in the following experiments.

3) The output dimension of projector: dp determines the capacity of the contrastive representation learning. In this exper-
iment, we tuned dp ∈ {64, 128, 256, 512}. Correspondingly, the dimension of the hidden layer in the projector and predictor
was set 4× dp to preserve the inverted-bottle-neck design in BYOL. As shown in Fig. 4c, KAT performs stable. It indicates
KAT is not sensitive to dp. Here, we set dp = 64 to keep KAT light-weighed in the training parse.

4) The augmentation probability: pdrop controls the average number of the tokens discarded in the augmentation. It affects
the diversity of the kernel representations on the online and target branches. Fig. 4d indicates that KAT performed stable to
different pdrop. We set pdrop = 0.7 in the following experiments for it achieved the best performance.

5) The weight in the loss function: λ controls the weight in the composition of the WSI classification objective and KCL
(Eq. (11)). As shown in Fig. 4e, λ is also an insensitive hyper-parameter for KAT. Here, we empirically set λ = 0.1. For more
discussion about λ please refer to section V.

C. Ablation study

The results of the ablation study are summarized in Table II. KAT w/o kernels denote KAT without the kernels and masks,
where the communication of the patch tokens is achieved by self-attention which is the same as ViT. We observed a significant
decrease when comparing KAT w/o kernels with KAT, where the macro-AUC dropped from 0.857 to 0.773 and the macro-F1
dropped from 0.525 to 0.415. It demonstrates the design of the anchor-related kernel attention module in KAT effectively
covers the incompatibility of ViT in WSI analysis.

More specifically, we studied the impact of the scale of the masks by changing δn in Eq. (2). Specifically, we assigned
equivalent small and large masks by respectively setting δn =

√
n̄k · 20 and δn =

√
n̄k · 2N−1, and also inverted the scale of

the masks by setting δn =
√

n̄k · 2N−n−1. The results are also given in Table II. The macro AUC drops from 0.857 to 0.824



9

TABLE III
COMPARISON OF THE STATE-OF-THE-ART METHODS ON THE Gastric-2K, Endometrial-2K, AND TCGA-Lung-3K DATASETS, WHERE AUC, ACC, AND F1

DENOTE THE MACRO-AVERAGE AREA UNDER ROC CURVE, ACCURACY, AND F1 SCORE, RESPECTIVELY.

Method Gatric-2K (cls=6) Endometrial-2K (cls=5) TCGA-Lung-3K (cls=3)
AUC (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%)

RNN-MIL [34] 75.3 ± 3.4 72.4 ± 2.3 41.5 ± 3.1 79.2 ± 1.8 50.4 ± 2.8 48.7 ± 2.5 82.7 ± 2.6 56.0 ± 5.7 54.0 ± 7.8
DSMIL [37] 81.9 ± 0.6 76.0 ± 1.3 43.6 ± 2.3 83.8 ± 1.2 54.3 ± 1.9 52.3 ± 2.1 92.3 ± 0.1 73.9 ± 0.7 75.5 ± 1.0
CLAM [21] 79.2 ± 2.1 77.0 ± 4.2 44.7 ± 3.4 83.5 ± 0.5 55.1 ± 0.4 53.0 ± 0.9 94.6 ± 0.2 83.3 ± 0.6 84.5 ± 0.4

ViT [12] 77.3 ± 1.9 72.6 ± 5.6 41.5 ± 5.6 82.8 ± 1.1 54.4 ± 3.9 50.8 ± 3.5 92.9 ± 0.3 77.8 ± 0.5 79.1 ± 0.8
Nyströmformer [22] 81.6 ± 2.2 77.0 ± 2.5 46.3 ± 3.8 81.5 ± 0.4 56.1 ± 0.9 53.4 ± 0.3 95.5 ± 0.4 83.8 ± 1.3 85.2 ± 1.1
TransMIL [14] 78.1 ± 1.7 81.1 ± 1.4 48.1 ± 2.7 85.0 ± 0.7 55.1 ± 2.3 51.4 ± 1.7 95.6 ± 0.5 82.6 ± 2.0 84.0 ± 2.0
Patch-GCN [18] 81.5 ± 1.9 79.3 ± 3.5 46.5 ± 3.9 84.2 ± 0.7 54.4 ± 4.5 52.2 ± 3.6 96.0 ± 0.2 83.9 ± 0.6 84.8 ± 0.7
LAGE-Net [23] 81.4 ± 0.9 76.9 ± 3.8 44.2 ± 3.5 84.4 ± 0.3 54.4 ± 4.5 52.2 ± 3.6 95.6 ± 0.6 84.2 ± 1.0 85.5 ± 1.1

KAT w/o KCL 84.7 ± 1.2 81.2 ± 1.6 51.3 ± 2.1 86.4 ± 0.8 58.8 ± 1.4 56.1 ± 1.3 96.5 ± 0.1 84.9 ± 0.6 86.4 ± 0.6
KAT 85.7 ± 0.7 82.3 ± 1.1 52.5 ± 1.5 86.9 ± 0.2 59.7 ± 0.8 57.5 ± 0.8 97.1 ± 0.2 85.9 ± 0.7 87.4 ± 0.8

(δn =
√
n̄k · 2N−1) and 0.826 (δn =

√
n̄k · 2N−n−1) when large masks are used in the early stages of KAT. Meanwhile, there

is also a significant decrease in the metrics when only small masks (δn =
√
n̄k · 20) are used. These results have certified

that the design of hierarchical masks from small to large scale is necessary for the KAT model. It helps KAT learn structural
patterns from the micro to the macro of the WSI.

Then, we removed the contrast loss by setting λ = 0. Table II shows a significant performance gap between KAT and KAT
w/o KCL. This result has certified the necessity of the proposed KCL mechanism.

D. Comparison for WSI classification

We compared our method with 8 methods, including RNN-MIL [34], DSMIL [37], CLAM [21], ViT [12], Nyströmformer
[22], TransMIL [14], Patch-GCN [18], and LAGE-Net [23]. For all the Transformer-based models, we uniformly set the
embedding dimension de = 256 and the head dimension dh = 64. The mean and standard deviation results on the test subset
through the five-fold cross-validation are presented in Tables III and the subtype ROC curves are drawn in Figs. 5, 6, and 7.

Overall, the proposed method achieved the best performance with a macro-AUC of 0.857 on the Gastric-2K dataset, 0.869
on the Endometrial-2K dataset, and 0.971 on the TCGA-Lung-3K dataset for WSI sub-typing tasks.

RNN-MIL, DSMIL, and CLAM are typical MIL-based methods. The structural relationship of the patches is not considered
in these methods. The abandonment of the structural modeling caused generally gaps to the structure-aware methods, e.g.,
PatchGCN, LAGE-Net, and KAT.

ViT is our baseline method, which describes the patch allocation by trainable positional embeddings. Nyströmformer is a
variant of Transformer where a linear approximation solution is proposed to substitute the original self-attention computation.
The results show that the macro AUCs of the two methods are 4.3% to 8.4% inferior to the proposed KAT model due to the
problem of positional inconsistency and conflict in tokens.

TransMIL achieved better AUCs than Nyströmformer on the endometrium and lung histopathology datasets. Nevertheless,
the spatial relationship described by PPEG is also inconsistent with different WSIs. This inconsistency introduced additional
noise, especially on the gastric dataset where the tissue area varies a lot to different WSI. It made TransMIL perform even
worse than the basic Nyströmformer regarding the AUC on the gastric dataset.

In comparison, the proposed KAT builds uniformly distributed anchors that are adaptive to the shape and size of the tissue
region and generates hierarchically region masks for the anchors to describe the local to the global relationship of the patches.
The spatial relationship described by KAT is more complete and consistent compared to the previous methods and thereby
achieves relatively better performance.

The subtype ROC curves are presented in Figs. 5, 6, and 7 indicate that the proposed KCL strategy significantly improves
the performance of KAT for recognizing the lesions with fewer training samples, e.g. gastric MA, SRCC, and endometrial
SEIC.

E. Comparison of computational complexity

We calculated the model parameters, floating point operations (FLOPs) for model inference, and the maximum GPU memory
cost for train/test stages to show the computation and memory efficiency of the compared methods. The results are presented in
Table IV, where only the models for WSI prediction are counted and the CNN models for feature extraction are not included.
For all the Transformer-based methods, the results are obtained based on 6 stacked blocks with 8 heads.

RNN-MIL has a constant low cost in computation and memory for all the WSIs since it only takes the top-K activated
patches as the input. DSMIL and CLAM are typical instance-based MIL models, where no interactive operations for patch pairs
are involved. Table IV shows that the computational amount and the memory usage for the two methods are linearly increased
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(a) RNN-MIL (b) DSMIL (c) CLAM (d) ViT (e) Nyströmformer

(f) TransMIL (g) PatchGCN (h) LAGE-Net (i) KAT w/o KCL (j) KAT

Fig. 5. Comparison of sub-typing ROC curves of state-of-the-art methods on the Gastric-2K dataset, where the solid line curves are the mean values of the
cross-validation and shaded area under the curve represents the standard deviation.

(a) RNN-MIL (b) DSMIL (c) CLAM (d) ViT (e) Nyströmformer

(f) TransMIL (g) PatchGCN (h) LAGE-Net (i) KAT w/o KCL (j) KAT

Fig. 6. Comparison of sub-typing ROC curves of state-of-the-art methods on the Endometrial-2K dataset.

(a) RNN-MIL (b) DSMIL (c) CLAM (d) ViT (e) Nyströmformer

(f) TransMIL (g) PatchGCN (h) LAGE-Net (i) KAT w/o KCL (j) KAT

Fig. 7. Comparison of sub-typing ROC curves of state-of-the-art methods on the TCGA-LUNG-3K datasets.
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TABLE IV
COMPARISON OF MODEL PARAMETERS (PARAMS), FLOATING POINT OPERATIONS (FLOPS), AND TRAIN/TEST GPU MEMORY COST (MEM.) FOR WSIS

WITH THE DIFFERENT NUMBER OF FOREGROUND PATCHES (np), WHERE THE GPU MEMORY COST IS TESTED WITH ONE SAMPLE BY SETTING THE
BATCH SIZE TO 1.

Method Params
np = 500 np = 2000 np = 4000 np = 8000 np = 16000

FLOPs Mem. FLOPs Mem. FLOPs Mem. FLOPs Mem. FLOPs Mem.
(MB) (×109) (MB) (×109) (MB) (×109) (MB) (×109) (MB) (×109) (MB)

RNN-MIL [34] 1.25 0.09* 44* / 27* - - / - - - / - - - / - - - / -
DSMIL [37] 0.34 0.14 11 / 5 0.56 24 / 19 1.1 47 / 37 2.3 90 / 73 4.5 183 / 150
CLAM [21] 1.38 0.77 66 / 19 2.8 78 / 44 5.3 138 / 77 10.9 265 / 142 21.8 514 / 277

ViT [12] 2.51 5.8 119 / 49 56.7 1192 / 367 205.2 4442 / 1336 777.5 17230 / 5152 3023.7 OOM
Nyströmformer [22] 1.51 3.1 169 / 29 12.2 351 / 79 24.6 634 / 155 50.6 1162 / 296 111.7 2260 / 588
TransMIL [14] 1.52 3.1 170 / 29 12.3 358 / 80 24.7 646 / 155 50.8 1186 / 296 112.0 2309 / 588
PatchGCN [18] 1.44 2.4 30 / 14 7.8 103 / 43 18.5 200 / 78 51.2 396 / 151 162.4 786 / 299
LAGE-Net [23] 3.13 5.9 116 / 42 61.0 1204 / 363 221.4 4473 / 1336 840.5 17297 / 5160 3271.8 OOM

KAT (w/o KCL) 1.21 3.0 58 / 19 11.8 154 / 49 23.7 333 / 96 47.4 792 / 210 95.1 2154 / 540
KAT (w/ KCL) 2.51** 62 / 19 171 / 49 360 / 96 846 / 210 2297 / 540

* RNN-MIL takes the top-K activated patches as the input. The FLOPs and memory cost is constant for different WSI.
** The complete model for self-supervised training contains the parameters for both the online branch and the target branch. The parameter number for inference is 1.21

MB, the same as KAT (w/o KCL).

Fig. 8. Visualization based on the kernel attention mechanism in KAT with N = 4, where (a) displays the attention weights of the kernels with blue dots,
(b-d) respectively visualize the raw attention maps, the soft-masks, and the masked attention map for the kernel K1, (e-g) are the maps for kernel K2, (h)
is the integrated attention map, and (i) provides the ground truth (the top-right) and representative tumor regions (indexed by digits). For more details please
refer to section IV-F.

as np enlarges. It also demonstrates that both the FLOPs and memory cost for ViT are quadratic related to np. Especially, for
large WSIs that contain 16,000 foreground patches, the memory cost of ViT is over 24 GB, which is already out-of-memory
for an Nvidia RTX 3090 GPU. In comparison, the proposed KAT has a linear increase in computational amount and memory
cost to np owing to the linear property of the KA module. Specifically, the inference FLOPs and memory cost for a WSI
within 16,000 patches is 95.1 G and 540 MB, respectively, which is comparable with the models based on linear-approximated
Transformer, i.e., TransMIL and Nyströmformer. This property makes KAT has significant advantages to ViT in processing
large WSIs.

F. Visualization

The interpretability is equally important as the accuracy for assistant cancer diagnosis based on WSI analysis. It can help
pathologists determine whether to adopt the suggestion of AI. The design of the kernel attention and kernel representation
learning of KAT make it more eligible to generate visual outputs. In this section, we present the interpretability of KAT in
aspects of representative regions indication and content-based similar region retrieval.
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Fig. 9. Display of similar regions retrieval, where the first column provides the regions for 4 query items in different lesion types, the top-returned regions
from the database for each query item are ranked on the right, and the irrelevant return regions (have different labels with the query item) are framed in red.

TABLE V
RESULTS FOR THE ABLATION STUDY, WHERE THE AVERAGE PRECISION OF THE TOP-K RETURNED ITEMS (P@K), THE MEAN AVERAGE PRECISION

(MAP), MEAN RECIPROCAL RANK (MRR) OF THE TOP-1 CORRECT ITEM, AND THE MEAN RECALL OF THE TOP-K ITEMS (R@K) ARE CALCULATED AS
METRICS.

Stage P@5 P@20 mAP MRR R@5

1 0.722 0.720 0.718 0.796 0.897
2 0.783 0.769 0.753 0.839 0.905
3 0.808 0.809 0.808 0.847 0.887
4 0.826 0.814 0.811 0.859 0.892

1) Representative regions indication: The A
(n)
c←k ∈ RK obtained in Eq. (6) indicates the weights of the kernels, i.e. the

contribution of the anchor-related regions, for the WSI classification. The visualization of A
(n)
c←k, n = 1, 2, 3, 4 for a typical

gastric WSI is presented in Fig. 8a, where the blue dots indicate the position of the anchor and the size of the dots is positively
correlated to the attention weight. As shown in the ground truth (Fig. 8i), the WSI contains two pathological types of tissue,
i.e. HGIN and LGIN, and therefore the WSI is categorized as HGIN according to the diagnosis priority. It is obvious that KAT
has gradually increased the attention in the anchors located near HGIN tissues, and simultaneously suppressed the attention in
the normal and LGIN regions. This behavior made KAT correctly predict the subtype of the WSI.

Furthermore, the attention map for a certain anchor can be obtained by projecting the values of A
(n)
k←x and M(n) (see Eq.

(4)) on the WSI. Fig. 8(b-d) visualizes a typical anchor K1, where Fig. 8b shows the raw attention maps resolved from the
K1-th row of A(n)

k←x, Fig. 8c displays K1’s soft-masks resolved from M(n), and Fig. 8d provides K1’s masked attention maps
that are resolved from the masked attention matrix Ã

(n)
k←x = A

(n)
k←x ⊙M(n). Similarly, Fig. 8(e-g) provides the visualization

for another typical anchor K2. It shows that both K1 and K2 originally highlight the regions within LGIN and HGIN tissues,
which are highly correlated with the pathologist’s annotation (see Fig. 8i). Then, the two kernels changed to observe their
nearby lesions after being masked. In this way, K1 turned to be an HGIN-representative anchor and K2 to be an LGIN anchor.
It is the reason that the classification token gradually enhanced the attention to K1 and meanwhile weakened the attention to
K2 in decision making.

Finally, we can generate an integrated attention map by resolving the matrix A
(n)
c←x = A

(n)T
c←k Ã

(n)
k←x as visualized in Fig. 8h.

It is apparent that A(n)
c←x explicitly highlights the diagnostic relevant regions of the WSI. Therefore, it is valuable in assisting

pathologists in diagnosis.
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TABLE VI
INFERENCE TIME (IN SECOND) OF THE PROPOSED FRAMEWORK AS A FUNCTION OF THE NUMBER OF PATCHES IN THE WSI. THE MEAN AND STANDARD

DEVIATION TIME ON THE GASTRIC-2K DATASET FOR PREPROCESSING AND SIMILAR REGION RETRIEVAL ARE REPORTED FOR THEIR TIME COST ARE
NOT DIRECTLY CORRELATED WITH THE NUMBER OF FOREGROUND PATCHES.

#Patches (np) 500 2000 4000 8000 16000

Preprocessing 0.024 ± 0.013 (mean ± std on the dataset)

Data loading 2.239 8.959 17.919 35.838 71.676
CNN inference 0.956 1.670 2.568 4.396 8.009
Anchor clustering 0.291 0.372 0.502 0.650 0.829
KAT inference 0.048 0.048 0.050 0.052 0.052

Retrieval 0.012 ± 0.001 (mean ± std on the dataset)

Total 3.6 11.1 21.1 40.9 80.6

2) Performance for similar anchor retrieval: One motivation of the proposed kernel contrastive learning is to improve the
discrimination of the kernel representation. As visualized in the previous section, KAT can highlight the diagnostically relevant
regions of the WSI. These properties determine that KAT is adequate to build a content-based histopathology image retrieval
system, which is also a promising application for interpretable assistant diagnosis [23], [59], [60].

In this experiment, we extracted the most attentive representation from K(n) in the n-th scale and represent it as k̂(n). For
each scale, we built the retrieval database by collecting k̂(n) from the training set. Then, we regarded the k̂(n) for each WSI
in the test set as the query item. Then, the top-K similar items for each query item were retrieved from the database. The
retrieval performance was evaluated following [23]. The results are presented in Table V. It shows that the accuracy of retrieval
gradually increases as the scale n enlarges and the mAP for retrieval reached 0.811 based on k̂(4), i.e. the kernel representation
from the fourth block of KAT. It is a considerable accuracy for histopathology image retrieval systems. Meanwhile, P@5 and
R@5 are 0.826 and 0.892, respectively, for n = 4. This means that doctors can efficiently receive the diagnostically relevant
cases by only checking the top-5 returned results. Fig. 9 displays 4 instances of retrieval with k̂(4), where a region in size
of 2048 × 2048 centered on the most attentive area of k̂(4) under 20× lens is extracted to represent the WSI. It shows that
the returned regions are contently similar to the query ones and meanwhile the majority WSIs share the correct labels. The
visualization is consistent with the metrics presented in Table V. These results demonstrate the effectiveness of the KCL
strategy in the aspect of discriminative kernel representation learning. It also shows the capacity of KAT in diagnostically
relevant regions mining and retrieval for WSIs, which is practical for building intelligent and informative cancer diagnosis
systems.

G. Running time

In the end, we evaluated the running time of the proposed framework under our experiment environment. The results are
shown in Table VI. The major running time was from the patch data loading. Typically, it costs 35.838s to load 8,000 patches
from the disk to GPU. The time for extracting features from the 8,000 patches (with a batch size of 512) is 4.396 s and for
anchor clustering is 0.650 s. The inference time for KAT is around 50 ms. This time is insensitive to the number of patches
owning to the parallel computation capacity of the GPU. The preprocessing stage, including the foreground segmentation and
foreground patch detection, spent 24 ms, and the average retrieval time is 12 ms, which is negligible for the entire running
time.

V. DISCUSSION

Notably, the kernels in KAT are bound with anchors that indicate explicit locations on the WSI. Therefore, we can regard the
representation of a kernel as the feature of the region where the corresponding anchor mask is located. It has a higher level of
semantics than patch-level representations. Moreover, the proposed hierarchical masking strategy makes the kernel presentation
able to describe the tissue on different scales. These properties of the kernels allow KAT to produce more interpretable outputs
for assistant diagnosis. That is one of the motivations we built contrastive constraints on the kernel representations rather than
patch representations.

As one role of the validation data in our framework was to perform early stop, we report the best AUCs achieved on the
validation data in Fig. 4e. It is one reason that the results for different λ settings appear to be very close. Actually, we found
λ has a distinct effect on the training procedure of the model. Fig. 10 plots the average macro AUCs of the five trials as a
function of the training epoch, where the best value for each curve is marked by a dot. When λ = 0.001 and λ = 0, i.e.,
without contrastive loss, the best AUCs appeared in the early stage of training. But, the AUCs decreased as training continued.
It means the model was already overfitted to the validation data. In contrast, when set λ = 0.01 and λ = 0.1, the AUCs stably
increased along with the training progress and reached the best value at the end of training. It indicates a good generalization
performance of the model to unseen data, e.g. the test data. That is the reason why the model with λ = 0.1 achieved noticeable
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Fig. 10. Average macro AUCs of the five trials on the validation data as a function of the training epoch, where the best AUC values and the corresponding
epochs are marked dots.

improvement on the test set compared to the model without contrastive loss, as shown in Table II. Based on these results, we
concluded that the contrastive loss with a weighting of λ = 0.01 and λ = 0.1 are appropriate to our method.

SimCLR [61], MoCov2 [62], and BYOL [54] are popular self-supervised representation learning frameworks applied in
histopathology WSI analysis. SimCLR commonly requires a large batch size of up to 4096 for full performance [61]. MoCov2
needs a memory bank in size of 65K and multiple GPUs for full performance [62]. In contrast, BYOL does not rely on a
memory bank and meanwhile maintains satisfactory performance with a small batch size of 256 [54], which is computationally
efficient. Moreover, it achieves better performance than SimCLR and MoCov2 for multiple downstream tasks [54]. These
properties made us choose BYOL as the representation learner for the CNN and KAT.

In our previous work [52], we utilized the EfficientNet-B0 [63] as the feature extractor for the reason that it achieved an
overall best performance in the previous studies based on the EfficientNet-B0 pre-trained on ImageNet dataset [64], [65].
But, through an extended study, we found that ResNet-50 achieved a stable improvement from 0.71% to 1.83% of macro
AUC compared to EfficientNet-B0 when trained under the contrastive representation learning paradigm. We suppose the main
reason is that contrastive representation learning requires a considerable number of parameters to achieve good performance.
Therefore, we changed the feature extraction network from EfficientNet-B0 to ResNet-50 in this work.

The ground truths of the subtypes of the endometrial dataset and gastric dataset are certified by senior pathologists. The
subtype of HGIN in the gastric dataset is a borderline tumor between the subtype of LGIN and adenocarcinoma, which is
relatively hard to distinguish in clinical diagnosis. In the experiments, we also observed an apparent prediction confusion by the
compared models for the subtypes LGIN, HGIN, and adenocarcinoma, which is consistent with the clinical diagnosis. Similarly,
MDEA is an intermediate histopathology type between WDEA and LDEA, and thereby there is an apparent prediction confusion
of these subtypes. That is the main reason all the compared models obtained a relatively low accuracies and F1-scores, around
0.5 to 0.6, on the two datasets.

The proposed method utilized the dot-product operation, following Transformer, to calculate the cross-attention matrix
between the anchor representations and patch representations. Theoretically, the dot-product operation can also be replaced by
other operations, e,g. radial basis function (RBF) and Laplace kernel function as suggested in [66].

There are also related works that build trainable vectors and perform cross-attention operations for fine-grained image
understanding. These trainable vectors are named as Learned Part Dictionary in [67]. And in more recent works [68], [69],
these vectors are also named as Kernels. The outline structure of the proposed model fully follows the Transformer, including
the usage of the LayerNorm module, the structure of the MLP, the usage of residual connections, the multi-head design, and
the stacking strategy of the KA blocks. It is the reason that we named the proposed model kernel attention Transformer.

The current model defines uniformly distributed masks to guide anchors in learning specific regions of tissue. It is a generic
modeling strategy that does not take into account differences between cancer types. This is a drawback of the work that can
be further improved. One of the future works will focus on building cancer-type sensitive anchor masks based on trainable
relative distance embeddings, to improve the description ability for tissue structure. Another future work will focus on aligning
the kernels with the diagnosis reports of the WSIs and building a case-level vision-language model based on KAT for more
intelligent computer assistant cancer diagnosis.
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